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Abstract

The archaic centralized software systems, currently used
to manage buildings, make it hard to incorporate advances in
sensing technology and user-level applications, and present
hurdles for experimental validation of open research in build-
ing information technology. Motivated by this, we — a
transnational collaboration of researchers engaged in de-
velopment and deployment of technologies for sustainable
buildings — have developed SensorAct, an open-source fed-
erated middleware incorporating features targeting three spe-
cific requirements: (i) Accommodating a richer ecosystem
of sensors, actuators, and higher level third-party applica-
tions (ii) Participatory engagement of stakeholders other than
the facilities department, such as occupants, in setting poli-
cies for management of sensor data and control of electri-
cal systems, without compromising on the overall privacy
and safety, and (iii) Flexible interfacing and information ex-
change with systems external to a building, such as com-
munication networks, transportation system, electrical grid,
and other buildings, for better management, by exploiting
the teleconnections that exist across them. SensorAct is de-
signed to scale from small homes to network of buildings,
making it suitable not only for production use but to also
seed a global-scale network of building testbeds with appro-
priately constrained and policed access. This paper describes
SensorAct’s architecture, current implementation, and pre-
liminary performance results.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscella-
neous; D.2.11 [Software Engineering]: Software Architec-
tures

General Terms
Design, Architecture, Deployment
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1 Introduction

As one of the largest consumers of overall energy, build-
ings have emerged as attractive targets for using information
and communications technologies to advance large scale
sustainability goals. Computation technologies promise en-
abling intelligent sensing, learning, prediction, control, and
actuation to be deeply embedded in the fabric of building.
Such close integration will result in meeting performance
goals with the smallest energy footprint while being re-
sponsive to changing usage pattern, external conditions
and occupant needs. As a result there is now tremendous
research and entrepreneurial activity, as exemplified by the
ACM BuildSys itself, targeting buildings as an exciting sub-
strate for novel computational methods and technologies that
measure, model, understand, and optimize the design and
operation of these complex human-cyber-physical systems.

However, these efforts in building-scale energy man-
agement are fraught with deployment challenges, many of
which are rooted in the inflexible, isolated, slow, and archaic
software that forms the middleware in the current building
management systems. Designed for centralized facilities
management departments, currently available middleware
are poorly suited to accommodate the needs of emerging
research and production systems. Emerging needs include
(i) accommodating a richer ecosystem of hard and soft
sensors, actuators, and higher level third-party applications,
thus helping unleash innovation similar to the one observed
in mobile phone segment (ii) participatory engagement
of stakeholders other than the facilities department, such
as occupants, in setting policies for control of electrical
systems and sharing and management of sensor data,
without compromising on the overall operational security
and integrity, and (iii) flexible interfacing and information
exchange with systems external to a building, such as com-
munication networks, transportation system, electrical grid,
water network, and other buildings for better management
by exploiting the teleconnections that exist across them.

In order to nurture future information technologies for
building management and create a robust research ecosys-
tem, it is also important that middleware also provide mech-
anisms for experimental and research systems to interface



with a building for sensor information gathering and sub-
system control in a suitably limited and controlled fashion
taking into account safety, security and privacy considera-
tions of the occupants. Such an ability of the middleware to
be research-friendly is important since the complex physical
envelope and social milieu that buildings are embedded in,
makes them hard to model or to replicate in isolated testbeds,
and controlled evaluation of new technologies in operational
buildings is essential to scale and transition them into prac-
tice. The preceding observations are informed by our own
first hand experiences in research involving - development
of new sensing and actuation technologies relating to energy
and water sustainability; their deployment in diverse testbed

(single-family home, student apartments, student dormito-

ries, offices, and dry laboratories) across two cities in two

different countries with quite different climatic, economic,
legal, social, and cultural settings; and, sharing of testbed
access and data across the two different institutions involved.

This paper presents SensorAct, a middleware for building
management that incorporates several interesting capabilities
to help meet the requirements discussed above. SensorAct
has a twofold vision. First, it seeks to be a platform for pro-
duction use, providing the thin waist of an hourglass stack

for building information technology systems. It enables a

diversity of sensors/actuators and applications to sit below

and above it respectively, and a participatory approach to
building management that engages various stakeholders
with overlapping concerns. Second, by enabling a web of
interconnected installations, it seeks to seed a global-scale
network of building testbeds with suitably constrained and
policed access (to meet privacy and safety concerns of
occupants, facilities management, and Institutional Review

Board requirements for human subjects research) to sensor

and actuator resources enabling validation, comparison, and

generalization of research. The key features of SensorAct,
described in depth later in the paper, are:

A tiered and distributed architecture consisting of Vir-
tual Personal Device Servers for local storage, access
control and device management, and a federation of
Brokers as a distributed registry of users and device
servers resulting in an architecture that combines global
access with local control. Local device servers not only
permit scaling to higher rate sensing and actuation, but
also make it easier to meet safety and privacy concerns.

Powerful sensor and actuator guard rules that enable a
firewall using which device owners and occupants of
a space may exercise fine-grained control over sensory
data management and control of building subsystems.

Lightweight tasking framework that enable end-
applications to inject one-shot and persistent event-
triggered scripts into the middleware to perform rich
forms of sensor querying, sensor processing and fusion,
actuator control, and notifications.

2 Related Work

Sensing and control in buildings is addressed at different
levels by several systems, that can be broadly classified into
four categories - Commercial Building Management Sys-
tems (BMS), Home Automation Systems, third party Data
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Figure 1: Tiered architecture of SensorAct System

Aggregation Services, and Academic Research Systems. We
briefly describe each one of these together with related work
in privacy-enabling systems for sensor data collections.

Commercial BMS: have emerged as an end-to-end
system for management of several building operations e.g.
elevator control, fire response, and Heating Ventilation
and Air Conditioning (HVAC) control.  Of particular
reference to our work is HVAC control. Several aspects
differentiate the SensorAct system from BMS' enabled
HVAC systems. Software architecture of these systems is
targeted towards a centralized control with limited conflict
resolution when multiple entities execute control over the
same hardware controllers, thus restricting engagement
of end user occupant. Further, these software systems
expose limited hardware controller capabilities, allowing for
control operations that are hard coded in the closed, vendor
provided software system. While it is technically feasible
for external devices and third-party applications to exchange
sense and control information with the BMS systems using
open protocols such as BACNet and OPC (Openness, Pro-
ductivity and Collaboration) standard tunnels, complexity of
these protocols and limited exposure of hardware controller
capabilities restrict the support for multitude of new sensors
(e.g. communicating over ZigBee and Z-Wave), actuators
and third-party applications. Their expensive cost structure
and stovepipe system architecture make BMS inaccessible
to individual homeowners and constrained for data and
control sharing across multiple organizations.

Home Automation Systems: A separate segment of in-
dustry has catered to the requirement of individual home-
owners providing integrated hardware and software systems>

'Examples of commercially available BMS include
http://www.trane.com, http://www. johnsoncontrols.com, http://
www.buildingtechnologies.siemens.com

thtp://micasaverde.com, http://www.homeseer.com, http://
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and systems primarily providing software control with flex-
ibility to integrate with diverse hardware systems’. These
systems are primarily targeted towards security of the homes
and comfort of its occupants rather than energy conserva-
tion. Visualization and script support in many of these sys-
tems provide users with increased engagement. While many
of these systems support local data storage, there is limited
support for sharing sense and control across multiple home
deployments of these systems.

Data Aggregation Services: Several web-services have
been introduced recently that allow data aggregation and
visualization*. However, these services only provide limited
support for actuation, primarily catering to messaging trig-
gers. While RESTful interface allow these services to aggre-
gate data from geographically separated sensors, centralized
data storage architecture results in these services imposing
significant sensor data rate limits. Even though their central-
ized architectures allow easy sharing of data across multiple
users, these systems provide limited or no support for
privacy and security of the end user thus restricting the data
sharing to “all-or-nothing” model, rather than controlling the
information released as function of context and sensor value.

Research systems: Several sensor based research sys-
tems, such as SenseWeb [11], SensorWeb [5] and GSN [1],
have been developed and deployed. However, these systems
are limited primarily to data aggregation, visualization
and minimal sharing capabilities. There is recent research
work [6, 7, 10] in development of generic systems for build-
ing automation. These systems lack comprehensive support
for privacy aware data and control sharing across multiple
users. Further, complex sense-and-control operations are
only supported through applications external to the system,
thus limiting the control loop bandwidth. In addition to
overcoming these shortcomings, SensorAct system can
also be easily accommodate other capabilities supported
by these systems, such as metadata specification [6] and
protocol adaptations and abstractions to interface with
diverse sensor types [7]. Sensor Andrew [10] has similar
goals as SensorAct but does not support fine-grained sharing
and access control and limited database logging capability

www.controld.com/residential
3http://www.perceptiveautomation.comhttp://www.eragy.com
4http://www.eragy.com/MyEragy/, https://cosm.com, http://
www.nimbits.com, https://www.thingspeak.com, https://code.
google.com/p/wattdepot/ [2]
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for high-frequency sensors. IBM’s InfoSphere® platform
provides a set of commercial software tools for data inte-
gration, information management and real time stream data
analytics. But these tools were designed for enterprises and
provides no support for data and control sharing capabilities.
Privacy-aware mobile data collection: Primary inspi-
ration from the literature in privacy is that the users should
be given appropriate control over sharing of their data and
actuation of their devices [12]. This philosophy has been
earlier adopted in other storage systems, in mobile data
collection [3, 4, 6]. These systems propose personal data
repositories of sensory data, using virtualization as a way to
eliminate exposing data to third parties as would be the case
with data aggregation services. Building on this inspiration,
SensorAct system separates ‘“hosting” from “sharing”,
unlike data aggregators wherein a central data storage does
not allow fine-grained control over release of information
or control of actuators. Privacy notions in SensorAct system
architecture differ from these earlier proposed systems
to additionally allow for security of actuators and data
transformation mechanisms before releasing the data.

3 SensorAct Architecture

SensorAct is based upon tiered architecture as shown in
Figure 1. The main components of SensorAct are Virtual
Personal Device Server (VPDS) and Broker, interacting with
devices at the lower layer and users and third-party applica-
tions at the higher layer.

3.1 Devices

A device can consists of hard and soft sensors and actua-
tors. Sensory interface allows users to read the current state
e.g. PIR sensor specifying motion. Actuators allow users to
change the state of an appliance e.g. switching on the air-
conditioner as well as setting the parameters for a sensory
interface e.g. setting the sampling rate of a sensor. A device
consisting of an actuator should specify an IP address for its
accessibility. Each device is owned by a single user. Besides,
the physical sensors and actuators, SensorAct also supports:

Computed sensors: are abstractions that can be calculated
based on a pre-defined mathematical function applied
on a single or multiple sensor values. For example,
a computed sensor can specify average temperature in
a room over 10 minutes (calculated using temperature
values observed every second) and a computed sensor
InMeeting can be set based on multiple occupants in
the room (using a combination of motion sensor and

microphone sensor).
Grouped actuators: are abstractions that can control multi-

ple actuator e.g. power off the room may result in turn-
ing off air-conditioner as well as lights. These are simi-
lar to “scenes” as specified in several commercial home
automation systems.

3.2 Virtual Personal Device Servers (VPDS)
VPDS consists of a database, a Tasklet manager, a
Guard rule engine, a profile manager and APIs for devices,
users, and brokers to interact with the VPDS, as shown
in Figure 2b. A single physical server may host multiple

Shttp://www.ibm.com/software/data/infosphere
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Figure 3: Message exchange between VPDS Owner, VPDS, Broker and other users for different operations in the SensorAct system

VPDS, however virtualization is used to ensure the isolation
of VPDS and privacy of the data within it. A single user
owns a particular VPDS; though, the owner may allow other
users to have controlled access to the sensors and actuators
associated with the VPDS.

A VPDS Owner (VO) can manage multiple devices
owned by him through the profile manager. A device profile
consists of a set of attributes such as its name, IP address, a
collection of sensor and/or actuator profiles, number of chan-
nels, data types and units, location, placement, and exposure.
Additionally, a set of tags as < key,value > pairs may be
associated to let the user flexibly annotate additional details
of the device. Device profile is represented using hierarchi-
cal model to name and identify devices, sensors, actuators,
channels, and their readings uniquely e.g. building : floor :
room : device : id : [sensor|actuator] : id : channel : data.
A device search or data query can consists of a set of these
attributes. VO also generates an upload key and an access
key at the VPDS to be used in the devices for authorizing
the data upload into the VPDS and actuation access by the
VPDS respectively. Both the keys, together with the VPDS
address are then configured manually in the device to register
the device with the VPDS, as shown in Figure 3a. A device
can also be associated with more than one VPDS. Once a
device is registered with a VPDS, it can upload the data or
take actuation commands from the corresponding VPDS.

A schema-less, key-value based database is used to store
the sensor data from devices, allowing for efficient storage
and querying of unstructured time-series data. The database
stores WaveSegs (see Section 3.6) and can only be accessed
via the guard rule engine in the VPDS. The guard rule en-
gine is a set of guard rules (see Section 3.5) which are used
by VO to restrict access to the sensory data and actuation,
while sharing it with other users. Tasklets (see Section 3.7)
are lightweight scripts used to perform rich forms of one-
shot and persistent event-triggered actions including sensor
querying, sensor processing and fusion, actuator control, and
notifications. The triggers are in terms of complex events
specified over the real-time clock and real-time sensor mea-
surement. A task scheduler is used to execute the tasks.

The VPDS abstraction not only permits flexible provi-
sioning of hardware resources but also allows diverse de-
ployment scenarios ranging from VPDS hosted on a lo-
cal machine for high-rate low-latency sensing and control
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to VPDS running on cloud-based hosting services such as
Amazon EC with lower-rate sensing and control.

3.3 Broker

In SensorAct, a trusted broker contains a registry of users,
a registry of VPDSs, and acts as a mediator to help clients
establish a connection with VPDSs. Figure 3b illustrates the
process for registering a VPDS to a broker. First, VO gener-
ates a key (Kp) on the VPDS. Secret key (Kp) together with
VPDS attributes (e.g. IP address) are then used to register
it with a broker. Upon registration, the broker contacts the
VPDS with Kp and correspondingly the broker is added in
the list of trusted brokers at the VPDS. A broker also allows
a VO to share administrative privileges and data and control
access, for his/her VPDS, with other users on the broker. A
trusted broker is authorized to perform key management for
the VO to share administrative privileges with other users.
Broker also signs user attributes with a secret key for data
or actuation access to the VPDS that is directly performed
between the user and the VPDS. More details on privilege
sharing is discussed in Section 3.5. In the future, we also
plan to support federation of multiple brokers.

3.4 Users

In SensorAct, a user may have two roles: i) Owner of
his/her own devices and correspondingly associated VPDS
ii) User with data and control access as per the privileges
assigned by the owner other devices. A single user could
be the owner of his/her own VPDS and user for some other
VPDS. As an owner, a user may grant controlled access
to other users thus letting them access sensor data from
the user devices or to even control them in a carefully
constrained fashion. Users may use diverse end-applications
to consume sensor data and control actuators in a device.
These applications may provide users with more convenient
interface to the underlying APIs and tasklet mechanism.
SensorAct comes with a browser-based cloud-hosted ap-
plication to let users interact with brokers and VPDS, but
alternative end-applications can easily be implemented in
diverse programming languages.

3.5 Sharing privileges

Two sets of privileges are associated with each VPDS -
administrative privilege for guard rule, task and device man-
agement; and data and control access. When a VO wants
to share some administrative privileges, the trusted broker



(where the VPDS is registered) contacts the corresponding
VPDS and is provided with a secret key (Kp), as shown
in Figure 3c. Each key provided by the VPDS has associated
administrative privileges to perform one or more of the guard
rule, task and device management operations. A single key
may be shared across multiple users to provide them with
same group privileges. When a user wants to perform ad-
ministrative action, s/he requests for the VPDS address and
privilege key from the broker and thereafter directly contacts
the VPDS to perform the required action. Corresponding
API request by the user at VPDS is authenticated using Kp.

API requests for data and control access are authenticated
using user credentials, signed by the broker, and verified by
a set of “guard rules”. Each VPDS internally maintains a
set of guard rules, created by its owner and by other users
to whom the owner has given the privilege to create guard
rules. These guard rules are intended to meet privacy and
safety concerns associated with sharing of one’s sensors and
actuators. For example, the expressive guard rules permit
policies such as restricting access to a sensor by a user or
group of users as a function of time of day, sensor location,
and current measured value. This is considerably more pow-
erful than the all-or-nothing access to a sensors data that cur-
rent user authentication based data aggregation services and
other research systems provide. Moreover, the guard rules
also police access to the actuators, and ensure that a user
may not issues unsafe commands or sequence of commands
to an actuator. For example, facilities management may limit
the range within which a user may set an actuator, or how
frequently a user may change actuator settings.

By default, owner has all the privileges while other
users have no access unless permitted by the guard rules.
Hierarchy of users exercise control over shared devices
using nested rules wherein conflicts are avoided using
priorities associated with each rule. For the convenience
of the VPDS owner, SensorAct system provides a set of
template rules that can be filled in with required parameters
to create concrete rules. Users can create their own template
rules or use the template rules provided by the system.
Further flexibility in guard rule definition is provided
through support for globally defined macros and in-built
functions for data obfuscation. Users can define their own
groups of users using macros or specify multiple users by
using regular expressions in user condition.

Figure 4 illustrates sample guard rules and associated
architectural features. Figure 4a shows a guard rule that
allows all users in SensorAct.edu domain to access data col-
lected during work time only. However, the rule obfuscates
the data by adding Gaussian noise (provided as an internal
function by SensorAct system) with mean 70 and variance
15. WORK_TIME in condition field is a macro defined
through corresponding API with JSON object shown in
Figure 4b. To define repeat time, Unix Cron time expression
is used to specify 9am to 6pm during weekdays. Figure 4c
is an example of a template rule. The rule allows a user to
change an actuators value within a certain range, which is
parametrized. The concrete instantiation of the template rule
is shown in Figure 4d, which specifies the parameter values
as 60 and 100.
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“NAME” : “AddNoiseRule”,
“TARGET OPERATION”: “READ”,
“DESCRIPTION”: “Add gaussian noise to data on
work time for all users at SensorAct.edu.”
“PRIORITY”: 1,
“CONDITION”: “USER.email == *@SensorAct.edu
&& TIME == WORK_TIME”,

“ACTION”: “AddGaussianNoise (70, 15)”

(a) Normal guard rule
{ “MACRO NAME”: “WORK_TIME”,
“MACRO VALUE”: “[ * 9-18 * * 1-5 ]” }

(b) Guard rule macro

“NAME”: “ValueRangeTemplate”,
“DESCRIPTION”: “Allow changing actuator
values within specified range.”
“TARGET_OPERATION”: “WRITE”,
“CONDITION”: “VALUE >= #PARAMiMINivALUE
&& VALUE <= #PARAM MAX_ VALUE”,

“ACTION”: “ALLOW”

(c) Template guard rule

“NAME”: “ValueRangeRule”,

“TEMPLATE_RULE_NAME”: “ValueRangeTemplate”,

“DESCRIPTION”: “Allow changing actuator values
within 60 to 100.”

“PRIORITY”: 1,

“PARAMETERS”: { “#PARAM MIN VALUE”: 60

“#PARAM MAX VALUE”: 100 }
}

(d) Concrete rule instantiated from the template rule

Figure 4: Example guard rules

3.6 Sensory Information Representation

An important aspect of SensorAct is that it needs to han-
dle large volumes of data generated by a multitude of sen-
sors. Storing the time series of sensor data as individual tu-
ples is inefficient both in terms of storage size and querying
time. In order to provide an abstraction of sensors that is
generic, compact, efficient, and scalable to diverse sensing
modalities and sampling policies, SensorAct represents the
continuous sensor data streams using WaveSegs, an abstrac-
tion for sensor waveforms used in [4] and in turn inspired
by SigSeg used in MIT’s WaveScript system [9]. WaveSegs
refers to non-overlapping windows of the sensor waveform,
and are the atomic units from which a sensor waveform in
SensorAct is composed. Sensors send measurements to Sen-
sorAct as WaveSegs, and SensorAct’s storage is also orga-
nized in terms of WaveSegs instead of individual samples.

Within a WaveSeg the sampling policy is fixed, with sup-
port for both isochronous (periodic or uniform) sampling and
asynchronous (aperiodic or non-uniform or adaptive) sam-
pling. In the former case, SensorAct leverages isochronicity
for compactness of representation by foregoing explicit an-
notation of samples with timestamps and instead associating
a sampling period with a WaveSeg, as is also illustrated in
the example below. Each WaveSeg contains self explana-
tory metadata about the sensor readings such as location,
device name, sensor name, sensor id, sampling interval and
start time of the readings to enable rich data querying capa-
bilities. Additionally, each channel within a sensor is sep-
arately specified with channel name, units for the readings
and an array of float values specifying the sensor readings.
Additional metadata information, such as location, can also
be easily added to this description. Figure 5 illustrates the



"DEVICE_NAME" :
"SENSOR_NAME" :
"SENSOR_ID": 1,

"Office Flyport",
"MultiSensor",

"SAMPLING_INTERVAL" : 1,
"EPOC_TIME": 1344147449,
"CHANNELS": [
{
"NAME": "Temperature",
"UNIT": "Celsius",
"READINGS": [28.1,28.2,28.6,28.5,28.2,28.6,28.5,28.7]

{oaa}
]

! Figure 5: JSON representation of a sample WaveSeg

JSON representation of a WaveSeg, as used by a sensor de-
vice to upload data. While WaveSegs significantly improve
upon per-sample storage, the number of WaveSegs stored in
SensorAct’s database nevertheless directly affects query pro-
cessing performance. To further optimize performance, Sen-
sorAct opportunistically merges WaveSegs as they are up-
loaded by a sensor.

3.7 Lightweight Tasking Framework

The tasking framework of SensorAct supports tasklet,
light-weight non-blocking scripts, to perform sense-and-
control operations within the system. Tasklets provide a
generic way to perform several system operations such
as querying current and historical sensor data, real time
actuation, complex event management and processing, and
customized notifications and alerts. The tasklet framework
follows a simple programming model using the following
primitives:

e [nput - List of system devices and timers that act as
triggers for the corresponding action specified in the
tasklet. This is inspired by sensitivity list used in VHDL
programming language.

e When - Specifies a complex boolean operation using
AND, OR primitives as a combination of triggers spec-
ified as inputs.

e Execute - Specifies the corresponding action to be per-
formed when the condition in the “When” primitive
holds true.

Figure 6a shows an example tasklet. “Input” consists of

a time based trigger that becomes active every 2 minutes be-
tween 10AM and 6PM everyday. “When” primitive specifies
a simple condition which holds true every time the trigger is
active. “Execute” primitive specifies a script monitor_ac.lua
that is executed whenever “When” primitive is true, in this
case every 2 minutes between 10 AM and 6 PM everyday.
Additionally, parameter list using PARAMS primitive can be
used for parameterized action scripts. Using various inputs,
proposed tasklet model can support diverse operations as fol-
lows:

One-shot operations e.g. querying current status of a device
are supported by specifying null triggering condition re-
sulting in the action script getting executed immediately
and only once.

Periodic operations are supported by specifying periodic
timing conditions as triggers, as is also illustrated in the
example discussed in Figure 6a.
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( -- monitor_ ac.lua

"NAME": "Monitor AC", -- Reads sensor readings and
"PARAMS": { -- actuate appliance accordingly
"T1l": "Mickey:Rooml:Tempr:1",
"Al": "Mickey:Rooml:AC:1", -- epoc MINS minutes before
"MINS": 5, epocNmin = os.time() - (60*MINS)
"LIMIT": 30
} -- read MINS minutes avg value
"INPUT": { avgTr = VPDS:readAvg (T1l, epocNmin)
"TIMER1": "[0 0/2 10-18 * *]"

} -- Check and turn ON

"WHEN": "TIMER1", if avgTr > LIMIT then

"EXECUTE": "[monitor_ac.lual" VPDS:write (Al, VPDS: TURNON)
} end

(a) Example tasklet format (b) Tasklet scipt (Lua)

Figure 6: Tasklet example: Every 2 minutes from 10AM to 6PM every day,
read the past 5 minutes average temperature of room1 and turn on the Air-
Conditioner in the same room if the average temperature is above 30

Event driven operations e.g. real time monitoring and in-
teractions with devices, are supported using only de-
vices as triggers, resulting in the action script getting
executed whenever a change in the device value is ob-
served.

Periodic and Event based operations include fine-grained
monitoring and control, are supported using a combina-
tion of devices and timers as triggers. In this case, the
action script will be executed whenever a change in the
state of the device is observed and/or the timing condi-
tion is satisfied (depending upon the boolean expression
in the “When” primitive.

Action scripts are independent light-weight and non-
blocking programs, very similar to interrupt service routines,
that performs read and write operations on devices and com-
putes simple calculations and branching using the read data.
Any read/write operation to a device made by the tasklet pass
through the guard rule engine, explained in Section 3.5. As a
result, only those read/write operations that are authorized by
the device owners will be allowed. The tasklets will inherit
the permissions of the user who is executing it.

A Tasklet Manager receives the tasklet execution requests
and executes a tasklet when its corresponding triggering con-
ditions are met. Each tasklet runs with its own indepen-
dent execution context which is monitored by the tasklet
manager. As a result, no data exchange is supported across
tasklets. Once a tasklet is submitted, the tasklet manager val-
idates the task execution request and registers a trigger to the
system that monitors for the events (timer and device data)
based upon its triggering condition. A handle is assigned
to the tasklet and is returned to the user for future reference
that may include knowing the status or canceling the tasklet.
Tasklet manager also keeps track of any data produced by the
tasklet, particularly the data produces by periodic tasklets.
This data is accessible by the user executing the tasklet us-
ing the handle of the tasklet.

4 Implementation

Implementation of the architecture, as proposed in Sec-
tion 3, is an ongoing activity. We used Java and Play frame-
work® to implement multiple components of VPDS and Bro-
ker and schema-less MongoDB as database. We released the
system implementation code in open source’ on web hosted
code repository and welcome community contribution and

6http://www.playframework.org
Thttps://github.com/iiitd-ucla-pc3



Component | VPDS APIs

User /user/{register|login|list}

Key /key/{generate|delete|list|enable|disable}

Device /device/{add|delete|get|list|search|share}
/device/template/{add|delete|get |list}

Guardrule /guardrule/{add|delete|get |list}
/guardrule/association{add|delete|get|list}

Tasklet /tasklet/{add|delete|get|list}
/tasklet/{execute|cancel|status}

Data /data/{upload/wavesegment | query}

Component | Broker APIs

User /user/{register|login}

VPDS /vpds/{register|remove}

Table 1: Supported SensorAct APIs for different system components

Devices  Visualization  Repository Speak

SensorAct

Welcome | Logout

Sense - Interact - Actuate

Registered devices

testnode | 1IIT

Sensors
SAVE AS

SensorName EDIT

pir
SensoriD
i

SamplingPeriod
1

SensorName
temperature

Figure 7: Snapshot of sample user interface web application

usage. Table 1 lists the SensorAct APIs currently supported
in each of the system component. We also created a user in-
terface application, using several Web 2.0 technologies, for
VPDS owner to interact with the VPDS. Figure 7 shows the
snapshot of a sample user interface web application. The cur-
rent implementation of guard rule supports allow and deny
actions on read and write operations with basic conditions.
Arbitrary boolean expression are supported for conditions
USER.email, LOCATION_TAG (exact match), TIME (unix
epoch time) and VALUE.

The Tasklet manager uses Quartz®, an industrial-strength
task scheduler that scales well to large number of tasklets
besides interfacing well with the underlying Java-based im-
plementation of SensorAct. The scheduler supports both per-
sistent and one-time tasks. In the current implementation, a
background job is initiated on receiving a tasklet to monitor
the corresponding triggers. Whenever the registered trigger
is raised, corresponding tasklet will be executed in a separate
worker thread, managed by tasklet manager.

We use Lua’, a lightweight scripting language, to ex-
press tasklet script. Lua interpreters are known for small
memory footprint and fast execution, and Lua itself lends
well to domain-specific extensions. We use Java Scripting
API framework to execute lua scripts through jnlua'®, a Lua
script engine that integrates Lua into Java and supports lan-
guage bindings. Figure 6 illustrates a sample tasklet execu-
tion request and the corresponding Lua script, demonstrating
the flexibility and compactness of the SensorAct’s scripting
framework. Users can use the currently supported interface

8http://quartz-scheduler.org
Snttp://www.lua.org
Onttp://code.google.com/p/ jnlua
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to write their own tasklets. We also plan to provide support
for templates and graphical user interface to create common
tasklets and guard rules.

5 Evaluation

The complete evaluation of SensorAct requires extensive
deployment of hardware systems and a detailed user study
regarding the the usability and utility of the system features.
As this first work primarily focus upon the system architec-
ture, detailed evaluation is outside the scope of this paper. In
this section, we explain about our ongoing deployment plan
and the performance evaluation of SensorAct by emulating
the proposed deployment scenario.

5.1 Deployment plan

Proposed SensorAct will be deployed in diverse envi-
ronments by multiple collaborators, including two academic
partners - IIIT Delhi and UCLA and an industrial research
laboratory - IBM Research, India. Our largest deployment
in IIIT Delhi campus involves sensing infrastructure across
400 rooms in student dorms with hardware support for up
to 10 channels of sensory data per room, monitoring various
energy, ambient, and occupancy variables at 1 Hz. We fur-
ther plan to extend the sensing infrastructure to monitor fac-
ulty offices and interact with commercial Building Manage-
ment System (put in place for HVAC Control). Sensing and
control for all the infrastructure will be done using proposed
SensorAct system. Another academic deployment at UCLA
involves a 1200 sq. ft. laboratory space with 30 electrical
channels each and 10 event driven sensors for motion, door,
and light. Proposed system deployment for Softgreen [13]
testbed at IBM Research India involves more than 75 sens-
ing nodes collecting temperature, motion and various soft
sensors to infer employee occupancy information.

For each of the ongoing deployments, a multitude of sens-
ing platforms are being used for monitoring diverse set of
parameters. These platforms include Z-Wave based sensors
and plug computers, panel monitors, water flow sensors and
Ethernet/Wi-Fi based microcontroller platforms. We were
able to easily collect data from all these diverse sensors into
the SensorAct system with minimal effort. Experience with
these diverse deployment experience shows the general ap-
plicability of the SensorAct system architecture.

5.2 System Performance

We experimented the performance and scalability of Sen-
sorAct by emulating our largest deployment scenario. In
this setup, 400 identical processes running in parallel upload
sensor readings, each sending 100 sensor measurements (10
sensing channels at 1 Hz) every 10 seconds in the form of a
WaveSegs. All the data upload processes were hosted on a
laptop connected over Intranet with another laptop (2.3 Ghz
Intel Core i7 processor, 8 GB RAM, 5400 RPM Hard Disk)
hosting SensorAct. We disabled the Guard Rule engine to
test the baseline performance. We conducted this data up-
load experiment for 40 minutes. We verified that all the
WaveSegs were aggregated. The average and median CPU
usage was 14.6% and 7% and average and median RAM us-
age was 3.7% and 3.2% respectively. Results clearly indicate
the scalability of the SensorAct system for large scale data
aggregation from low frequency sensors.



The overhead of guard rule engine is based upon the num-
ber of rules, target operation (read or write) and number and
size of WaveSegs. Tasklet performance is based upon the
complexity of the script, size of object binding between Lua
and Java, and the number of read/write requests that goes
through the guard rule engine. To emulate a common read
operation by a normal user, we setup three guard rules - one
checking for the user email (at the WaveSeg level) and the
remaining two checking for the timestamps and the sensor
values (to be done for each reading in the WaveSeg). We
emulated the read operation, querying for 15 minutes of 1 Hz
sensor data as a nil triggered tasklet that reads 90 WaveSegs,
each containing 10 data values.

In the first experiment, we scheduled to execute the tasklet
once in every 5 seconds for a total period of 30 minutes. We
observed that, on an average, guard rule engine takes 3356ms
(including 10ms for database read) to process guard rules
for each tasklet and each tasklet execution instance takes
3363ms (including guard rule processing time). Since this
operation will be infrequent, current processing time will
work fine. However, we will be working on improving the
guard rule processing as proposed in the future work. To
emulate the data access by VPDS Owner, we repeated the
experiment without the guard rules. In this case, on an aver-
age, guard rule engine takes 11ms to process guard rules for
each tasklet and each tasklet execution instance takes 11.5ms
(including guard processing time). Average CPU usage dur-
ing these experiments were 68% and 2% respectively on a
laptop (2.4GHz Intel Core i5 processor and 2GB RAM).

6 Conclusions and Future Directions

SensorAct system is a result of the needs that we faced in
our own transnational collaborative research: an open, flex-
ible, taskable, and scalable information substrate for build-
ings into which multitude of sensors, actuators, and appli-
cations could be integrated; a building management system
approach in which the occupants are engaged as participa-
tory stakeholders instead of just passive consumers; and, ex-
change of data and limited access to testbeds in a fashion that
was cognizant of IRB constraints and sensitive to occupants
privacy and buildings safety. These experiences motivated
the proposed architectural design of SensorAct system.

While the initial implementation is done and in early
stages of being incorporated into our deployments, Senso-
rAct itself continues to evolve. Some specific areas of devel-
opment include seamless and intuitive device management
functions (automatic new device registration and removal of
obsolete devices), location and context based device search
and data query, implementation of federated broker aspect of
the architecture, performance optimization of the guard rules
via methods such as dynamic code compilation techniques in
packet filters used for network firewalls [8, 14], and supple-
menting guard rules which target behavioral privacy with an
anonymizing and aggregating proxy for privacy of identity.
Moreover, with the development code tree open source and
hosted on a cloud-based hosting and version control service,
we hope to engage other researchers as contributors of code
to SensorAct and to link their testbeds via SensorAct.
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