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ABSTRACT

Anomaly detection is an important problem in building en-
ergy management in order to identify energy theft and inef-
ficiencies. However, it is hard to differentiate actual anoma-
lies from the genuine changes in energy consumption due
to seasonal variations and changes in personal settings such
as holidays. One of the important drawbacks of existing
anomaly detection algorithms is that various unknown con-
text variables, such as seasonal variations, can affect the
energy consumption of users in ways that appear anomalous
to existing time series based anomaly detection algorithms.

In this paper, we present a system for monitoring the en-
ergy consumption of multiple users within a neighborhood
and a novel algorithm for detecting anomalies by combining
data from multiple users. For each user, the neighborhood is
defined as the set of all other users that have similar charac-
teristics (function, location or demography), and are there-
fore likely to react and consume energy in the similar way
in response to the external conditions. The neighborhood
can be predefined based on prior customer information, or
can be identified through an analysis of historical energy
consumption. The proposed algorithm works as a two-step
process. In the first step, the algorithm periodically com-
putes an anomaly score for each user by just considering
their own energy consumption and variations in the con-
sumption of the past. In the second step, the anomaly score
for a user is adjusted by analyzing the energy consumption
data in the neighborhood. The collation of data within the
neighborhood allows the proposed algorithm to differentiate
between these genuine effects and real anomalous behavior of
users. Unlike multivariate time series anomaly detection al-
gorithms, the proposed algorithm can identify specific users
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that are exhibiting anomalous behavior. The capabilities
of the algorithm are demonstrated using several year-long
real-world data sets, for commercial as well as residential
consumers.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

General Terms

Algorithms, Design, Experimentation

Keywords
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1. INTRODUCTION
Buildings account for a large proportion of energy us-

age around the world. Commercial and residential build-
ings combined account for 41% of national energy usage in
the US [1] and 47% in India [8]. In order to meet the in-
creasing energy sustainability standards, ‘smart’ buildings
are instrumented with sophisticated sensors for fine-grained
energy monitoring. The cost of some of these systems (such
as home automation) is voluntarily borne by building own-
ers, while others (such as smart metering) are mandated by
government policy. There has been rapid growth in energy
monitoring infrastructure in several countries. For exam-
ple, 46 million smart electricity meters have already been
installed in the US [15]. Analyzing smart meter data in or-
der to identify energy wastage is an important enabler for
recovering the installation cost of sensing infrastructure.
Several automated methods have been proposed in recent

literature for identifying abnormal energy usage events from
smart energy meter data [16, 2, 9]. The primary intuition be-
hind these approaches is that deviation from baseline energy
usage bears a one to one relationship with anomalous events.
However, this assumption has two major flaws. First, not
all deviations from baseline patterns are anomalous; energy
consumption can vary significantly based on the day of the
week, the time of the year, and many other seasonal and
contextual variables. Second, not all anomalous events dis-
play markedly different energy consumption; small devia-
tions may still be significant when contrasted with data from
other consumers within the neighborhood.
In this paper, we propose a novel method for identifying

abnormal energy usage events using partially known con-
text information. Our approach recognizes that sensing ev-
ery possible context variable (such as occupancy or zone
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Figure 1: Hourly power usage (normalized) of different buildings with in a large commercial building complex (neighborhood) in Sweden
for a year from 1st Feb 2013 to 31st Jan 2014. It shows, (a) daily and weekly power usage cycles with seasonal variations during summer,
winter and holidays, (b) examples of single point anomaly (marked in black), and (c) examples of sequence anomaly (marked in red).
X-axis denotes the day of the year while Y-axis is hour of the day.

temperature) is technically and economically infeasible. In-
stead, we use context information which is directly available
from meter readings: timestamps and metadata attached to
the meter identity. Temporal context information, extracted
from timestamps, is used for improving the anomaly detec-
tion accuracy by picking only the relevant historic data for
baseline estimation. This captures the effect of factors such
as operating hours (for commercial buildings) and seasonal
changes (such as heating/cooling loads) on the consumption
characteristics of the buildings. Neighborhood information
(as derived from available metadata) is used for adjusting
the anomaly score to account for unknown context variables
that influence historically correlated consumption patterns
in the same way.

The proposed approach consists of three steps:

1. Split the given meter readings into disjoint sets based
on available temporal context information.

2. Within each temporal context, run an anomaly detec-
tion algorithm separately on each meter’s readings.

3. Adjust the anomaly score for individual meter readings
based on available neighborhood information.

We validate the effectiveness of the proposed algorithm
for both residential and commercial buildings using energy
consumption data for a year, thus capturing seasonal trends
as well as shorter term ones. Through experiments, we show
the importance of using temporal context and neighborhood
information which significantly improves the anomaly detec-
tion accuracy in comparison with an existing anomaly de-
tection method proposed in [2]. The primary contributions
of this paper are, (i) a novel method for identifying abnor-
mal energy usage events by combining data from multiple
sources, (ii) classification and severity analysis for identi-
fied anomalous events, thus establishing a priority order for
decision making, and (iii) validation of the effectiveness of
the proposed method using year-long real-world smart meter
readings for both commercial and residential buildings.

The rest of this paper is organized as follows: Section 2
presents definitions and assumptions used in this paper, Sec-
tion 3 describes the proposed anomaly detection method in
detail, Section 4 presents the details about the data set used
for the experiments, Section 5 outlines the experimental de-
tails and results, and Section 6 describes the related work.
Discussion and limitations are presented in Section 7, fol-
lowed by Section 8 concludes the paper.

2. PRELIMINARIES
Before describing the proposed anomaly detection method

in detail, we first introduce the definitions and assumptions
used in this paper as below.

Anomaly classification

Given that anomaly events can occur at any time, we broadly
characterize the common anomalies in real-world buildings
into two categories:

• Single instance anomaly: Occurrence of an anomaly
event on a single instance in the given time series of
measurements. An example of single instance anomaly
is a sudden increase in energy consumption for a build-
ing on a given day. Figure 1 shows the examples of
single point anomalies (a few days within the black
boxes) in Meter 2 and 4 as the lighting systems were
not turned off during the night.

• Sequence anomaly: A set of consecutive anomalous
events over a short period of time. One example of
such an anomaly would be increased consumption for
a given building for an entire week. Figure 1 shows
examples of sequence anomalies (red boxes) in Meter
1 and 4 as some devices were left on during night hours
for few days.

Temporal context sets

As explained in the previous section, several types of con-
text variables can influence energy consumption for a user
or a set of users. In order to avoid using context vari-
ables, such as fine-grained occupancy and appliance usage
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patterns, that can only be measured with expensive sensing
infrastructure, we only use temporal context variables in this
work. Since energy usage events follow regular temporal pat-
terns, we define temporal context sets which split the given
meter readings into to N disjoint temporal subsets. Figure 1
shows the hourly power consumption of a commercial build-
ing complex for a year. It shows several temporal context
changeover events including daily cycle (working and non-
working hours), weekly cycle (week days and weekends) and
seasonal variations due to summer holidays, weather change
and different operational modes of a building. As an exam-
ple, each meter reading can be classified into one of three
temporal context sets, based on the development presented
in Section 3.1:

• WorkingDay-BusinessHours: This set contains me-
ter readings taken during business hours (8am to 5pm)
on working days (Monday to Friday).

• WorkingDay-NonBusinessHours: This set contains
meter readings taken outside business hours (5pm to
8am) on working days.

• Weekend: This set contains meter readings taken
during weekends, when commercial premises are unoc-
cupied throughout the day and night, while residential
buildings are likely to have increased occupancy.

Multiple temporal context sets can also be defined for each
meter reading based on the operating characteristics of a
building e.g. residential vs commercial.

Definition of neighborhood

The neighborhood of a given building (or residence) is defined
as the set of buildings (or residences) that are expected to be
influenced similarly by the same context variables (known or
unknown). This definition is based on available metadata.
For example, the neighborhood of a commercial building
may be defined to be the set of all other buildings within
the same commercial complex (administrative neighbors).
Alternatively, the neighborhood of a school building may be
defined to be the set of all other school buildings in the same
geographical area (functional neighbors). Neighborhood in-
formation can be predefined by a domain expert based on
prior customer information, or can be identified through
an analysis of historical energy consumption and available
metadata. As an example, authors in [18] proposed a frame-
work for grouping the consumers based on several contextual
dimensions such as locations, communities, seasons, weather
patterns, and holidays. In this work, we assume that iden-
tification of neighborhood information is a prior step before
applying the proposed anomaly detection method.

Problem description

The objective of this work is to identify potential abnor-
mal energy usage events using aggregate (building level)
smart meter data as the input. The abnormality is quan-
tified by computing anomaly scores for each time period.
The anomaly score computation combines metadata-based
neighborhood definitions with the historical correlation be-
tween each pair of time series, in order to compute the
pairwise influence of neighbors on each other’s individual
anomaly scores. In the absence of any metadata, the default
neighborhood is the set of all users, and pairwise influences
are computed purely using historical correlation.

SA11 = f (M1,TC1) SA1m = f (M1,TCm)

AFi=1,…,n = h (Self anomaly scores of all the neighbours of Mi)

M2M1

SA2

AS1 AS2 ASn

Adjusted anomaly scores 

SA1

Smart meter readings

SA1 = g (SA11, …, SA1m)

…

Anomaly score 

adjustment 

based on 

neighbor 

information
AS1 = p(SA1,AF1)

…

SAS

Compute Self 

Anomaly Score 

(SAS)

Mn

SAn
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ASn = p(SAn,AFn)AS2 = p(SA2,AF2)

…

…

Figure 2: Logical flowchart of the proposed anomaly detection
algorithm. The function f computes self anomaly score for each
meter and for each temporal context set separately followed by
function g concatenates them. Function p computes the adjusted
anomaly score for each meter data based on the available neigh-
borhood information.

3. METHODOLOGY
In this section, we describe the algorithm developed for

computing anomaly scores for energy consumption data, and
also for flagging potential events of interest. The anomaly
score, as it applies to this work, is a scalar in the range [0, 1]
(low to high severity) that denotes the likelihood of a given
data instance being anomalous. The proposed method con-
sists of three steps for computing this score: (1) split the
individual meter readings into disjoint sets based on avail-
able temporal context information (Section 3.1); (2) apply
an anomaly detection algorithm separately on each context
set and compute an initial anomaly score (Section 3.2); (3)
adjust the anomaly score for individual meter readings based
on available neighborhood information (Section 3.3). Fig-
ure 2 illustrates the workflow of the proposed anomaly de-
tection method.

3.1 Splitting data based on temporal context
A suitable period of time in the available data set (for ex-

ample, the past 60 days) is picked for the analysis described
in this section. The proposed algorithm computes anomaly
scores for each instance in this time period (for example,
for each day in a 60 day period). It can be executed on
a rolling basis in order to provide periodic feedback to the
end user. The first step in the anomaly detection method in-
volves splitting the given individual meter readings based on
the temporal context. As explained in Section 2, we use only
data timestamps for this classification because they are eas-
ily obtainable from existing metering infrastructure. Since
human activity typically follows regular temporal patterns,
appliance usage is highly correlated to the temporal con-
text. Therefore, computation of anomaly scores based on
time-classified data is expected to increase the accuracy of
the anomaly detection algorithm.
The specific definitions of temporal context for a physical

installation are assumed to be provided by a domain expert.
It is assumed that the number of definitions is C, and each
definition splits the data set into N disjoint subsets. For
example, the building manager for a commercial complex
could define a classification with N = 3 and a periodicity of
one week: WorkingDay-BusinessHours [Mon-Fri, 0800-1700
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Algorithm 1: Self anomaly detection algorithm

Input: XM
N,L: A multivariate time series spanning D

days (split into N temporal context sets with L

slots each) and M meters
Output: Am

n,l: Self anomaly score for each time slot
1 Compute dissimilarity matrix ∆m

n using DTW function
for all pairs of time slots (xm

n,i, x
m
n,j) within a given

temporal class.
2 Find the optimal number of clusters P in ∆m

n using
PAM.

3 Partition ∆m
n into clusters Cp, p ∈ {1, . . . , P} using the

k-medoid algorithm, compute the population of each
cluster and save in S̄m

n .
4 Compute the Euclidean distance vector D̄m

n from each
time slot xm

n,l to the medoid of each cluster Cp

forall the xm
n,l ∈ one temporal class and meter m do

5 forall the p ∈ {1, . . . , P} do
6 D̄m

n (p) = Euclidean distance (xm
n,l, Medoid(Cp))

7 Am∗
n,l =< D̄m

n , S̄m
n >

8 Compute the normalized anomaly score for each xm
n,l

A
m
n,l =

Am∗
n,l

maxi∈tempclass(Am∗
n,l )

hours], WorkingDay-NonBusinessHours [Mon-Fri, 1700-0800
hours], and Holidays [Sat-Sun]. In the absence of temporal
context information, it can be obtained automatically by ap-
plying existing change point detection methods [17, 6]. The
algorithm that we propose thus supports the definition of
multiple temporal context sets for the same set of data. For
example, the same date/time instance could be classified by
the time of the day, day of the week, or season of the year.
The self anomaly detection algorithm described in Section
3.2 can be run on each temporal context set separately, and
the scores can be merged later.

3.2 Self anomaly score computation
After time series data from each meter has been classi-

fied according to a given temporal context definition c ∈
{1, . . . , C} into N subsets, each subset is processed inde-
pendently by an anomaly detection algorithm. This initial
analysis, referred to as Self anomaly detection, is summa-
rized in Algorithm 1. The input to the algorithm is the time
series from one meter and for a single temporal context (e.g.
WorkingDay-BusinessHours), and the output is an anomaly
score for each instance in the time series. Note that the al-
gorithm only requires historical data for this computation,
and that no neighborhood information has been introduced
at this point.

In this work, we denote each series of consecutive meter
readings within a single context set as a power-time cycle
or time slot. For example, all meter readings between 0700
and 1800 on a Monday would form one time slot in the
WorkingDay-BusinessHours set. Let us denote the read-
ings from meter index m ∈ {1, . . . ,M} in a given neigh-
borhood, and within a given time slot, by xm

(n,l,t), where
n ∈ {1, . . . , N} is the index of the context set, l ∈ {1, . . . , L}
is the index of the time slot, and t ∈ {1, . . . , T} is the time
index (minute or hour of the day) within the time slot. We
refer to the collective set of all measurements in a single slot
xm
n,l, to all the time slots within a single context set collec-

tively by the notation XM
n,L, and to the entire data set by

the notation XM
N,L. In this paper, we use a classification

scheme with N = 3 and a single temporal context definition
(C = 1), as described in Section 2.
The algorithm computes the dissimilarity matrix ∆m

n for
all pairs of time slots (xm

n,i, x
m
n,j), where i, j ∈ {1, . . . , L} that

belong to the same meter and the same temporal class. In or-
der to measure the similarity/dissimilarity between two time
slots, we use the Dynamic Time Warping (DTW) method
[13]. This is a common method for finding the similarity
between two time series, while accounting for small differ-
ences in temporal characteristics. This method is especially
useful in the current instance because it compensates for dif-
ferences in the working hours for two buildings, and also for
the shifts caused by daylight saving time (where applicable).
The next logical step is to execute a clustering algorithm

on the computed dissimilarity matrix ∆m
n , thus assigning

similar time slots to the same clusters. An unsupervised k-
medoid clustering algorithm based on Partitioning Around
Medoids (PAM) [12] is used for this purpose. The PAM
method identifies the optimal number P of clusters in the
dissimilarity matrix ∆m

n , and the k-medoid algorithm sub-
sequently populates the clusters. In contrast with other dis-
tance based clustering algorithms such as k-means, k-medoid
algorithm is robust to noise and outliers. Note that the ex-
istence of a cluster for a certain set of operating character-
istics only implies that these characteristics were observed
a significant number of times in the data set. However, the
cluster itself may represent an undesirable operating condi-
tion from the perspective of a building operator. This issue
is discussed further in Section 5.
An anomaly score is assigned to each time slot xm

n,l based
on the Euclidean distance between this time slot and the
medoids of all the clusters, as described in Algorithm 1.
The set of Euclidean distances between time slots xm

n,l and
each medoid is stored in an P -sized vector D̄m

n . The size
(population) of each cluster Cp, p ∈ {1, . . . , P} is stored
in a P -sized vector S̄m

n . Note that S̄m
n is common to all

instances belonging to the same temporal class for a given
meter m. The unnormalized anomaly score Am∗

n,l is then
derived by the dot product between D̄m

n and S̄m
n . In order

to compute the relative severity of each anomaly, the final
step in the self anomaly detection algorithm is to normalize
by the maximum observed value of Am∗

n,l within the same
temporal class for a given meter m. If there are multiple
context definitions (C > 1), the anomaly scores from each
one can be combined to give the collated self anomaly score
Am

n,l. The final value of Am
n,l is fed to the neighborhood

adjustment algorithm described in the next subsection.

3.3 Neighborhood based adjustment
After computing the initial (self) anomaly scores for each

time slot xm
n,l from individual meters m, the final step in the

algorithm adjusts these scores based on contemporary self
anomaly scores within the neighborhood of m. This adjust-
ment accounts for those unknown contextual factors that in-
fluence energy consumption for all meters within a neighbor-
hood in a similar way. An adjustment δmn,l for each instance
xm
n,l is calculated based on the original self anomaly score

Am
n,l and the baseline correlation of power consumption be-

tween individual members of a neighborhood. The baseline
correlation itself is computed using historical comparisons
between each pair of meters. As described in Algorithm 2,
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Algorithm 2: Integrated anomaly detection algorithm
with neighborhood comparison

Input: XM
N,L: A multivariate time series spanning D

days (split into N temporal context sets with L

slots each) and M meters
Am

n,l: Self anomaly scores for each instance in

XM
N,L

Output: Âm
n,l: neighborhood-adjusted anomaly score

for each instance in XM
N,L

1 Am
n,l = ComputeSelfAnomalyScore(xm

n,l).
2 Compute the correlation matrix Cn of size M × L

between the time series {xm1

n,1, . . . , x
m1

n,L} and

{xm2

n,1, . . . , x
m2

n,L} for each pair of meters (m1,m2).

3 Adjust self-anomaly score based on neighborhood
forall the l ∈ {1, . . . , L} do

4 forall the m ∈ {1, . . . ,M} do
5 δmn,l =

∑
k 6=m

Cn(k, l)A
k
n,l

Âm
n,l = |A

m
n,l − w × δmn,l|

δmn,l is given by the correlation-weighted anomaly scores from
the same time slot (n, l), for all meters within the neighbor-

hood of m. The neighborhood adjusted anomaly score Âm
n,l

is defined to be the absolute value of the difference between
the self anomaly score Am

n,l and the weighted adjustment
factor w× δmn,l. The parameter w is chosen between 0 and 1
which decides how much importance to be for the neighbor-
hood for seasonal adjustments. The optimal value for w can
be chosen by a domain expert considering the or calculated
empirically, as discussed in Section 5.

Intuitively, information from other meters within the neigh-
borhood should help the anomaly detection algorithm to
differentiate between the effects of unknown contextual fac-
tors and anomalous behavior for a single meter. Unknown
contextual factors are expected to produce an effect on sev-
eral meters within the neighborhood. Therefore, the sever-
ity of an observed anomaly should be reduced if multiple
other meters also report high self anomaly scores. On the
other hand, anomalous behavior observed for a given meter
but not for other meters within the neighborhood (or vice
versa) should result in high anomaly scores. Finally, low self
anomaly scores throughout the neighborhood should result
in low anomaly scores overall. We note that the definition of

Âm
n,l given in Algorithm 2 satisfies all of these requirements.

4. DATASETS
We evaluate the proposed anomaly detection method us-

ing energy meter readings collected from two different ge-
ographical locations. The dataset was collected from com-
mercial and residential buildings located in Sweden and In-
dia respectively. Thus, these two data sets represent energy
meter readings collected from buildings with different op-
erational characteristics along with influence from diverse
context factors such as weather conditions.

4.1 Commercial buildings
The commercial building data set used for our experi-

ments was collected from a public school campus in Swe-
den. The school consists of 10 buildings for classrooms and
office spaces. These buildings are operated on fairly regu-
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Figure 3: The baseline correlation between 10 buildings for a year
in the Sweden commercial building data set. Meters are arranged
using hierarchical clustering algorithm.
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Figure 4: The baseline correlation between 18 apartments for
a year in the Indian residential buildings dataset. Meters are
arranged using hierarchical clustering algorithm.

lar schedules with fixed working days, holidays and daily
fixed hours work cycle. The aggregated energy usage of
each building within the campus was measured separately
by smart energy meters. Meters were installed by a third
party energy data analytics company for real-time energy
monitoring. Aggregated meter readings were sampled at 1
minute to 15 minutes interval and stored in a cloud-based
data collection system for more than a year. Figure 3 shows
the baseline correlation among these buildings for a year.

4.2 Residential buildings
This data set contains meter readings from a multi-floor

residential complex in India. This building complex consists
of 8 floors with 3 apartments in each floor, with a total of
24 apartments in a single building. Most residents in these
apartments are working professionals who follow regular of-
fice hours. Hence the apartments are typically not occupied
during daytime but display high activity during morning
and evening. These apartments are equipped with com-
mon home appliances such as lighting systems, refrigerator,
heaters and air-conditioners. A smart meter was installed
for each apartment separately for energy monitoring. En-
ergy meter readings are sampled at 30 seconds interval and
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Appliance
Power
(kW)

Anomaly
type

No. of
instances

Duration

Air conditioner 1.8 single 5 6 - 24 hours
Air conditioner 2.0 sequence 2 2 - 3 days
Room heater 2.2 single 4 6 - 24 hours
Room heater 2.2 single 3 2 - 3 days

Table 1: Details about the injected abnormal energy usage events
into the residential building dataset.

stored in an open source meter data aggregation system.
Among the 24 apartments, we selected 18 for our analysis
because there was a lot missing readings for the remaining 6
apartments. Similar to commercial building dataset, we use
data spanning one year for our experiments, between August
2013 and July 2014, to account for the seasonal variations.
Figure 4 shows the baseline correlation among these apart-
ments for a year.

4.3 Preprocessing and anomaly injection
The two data sets represent smart meter readings col-

lected from different geographical locations, weather con-
ditions, daily/weekly usage cycles. We down sampled the
meter readings to 1-hour resolution (averaged over 1-hour
window) for each data set. Because utility companies gener-
ally collect meter readings as low as 1 hour resolution and for
a valid comparison of the proposed method with an existing
method (See Section 5.1) which also used 1 hour resolution
data. Further, days which contained more than 10% of miss-
ing values were excluded from our analysis. For the rest of
the missing data (1% for commercial and 15% for residen-
tial data), the missing values were replaced by a weighted
average of the rest of the day.

4.3.1 Verification procedure for anomalies

Since the analysis presented in this paper is based on
real historical data, ground truth information about actual
anomalies is not readily available. Discussions with the own-
ers of the commercial data set were used to confirm the ve-
racity of certain anomalies in the Swedish data. These con-
firmed cases are presented in the next section. For residen-
tial data, our analysis is restricted to identifying a particular
abnormal energy usage event where one or more appliances
are operational outside usual hours. An example of such
an anomaly would be the operation of heating/cooling loads
outside office hours in commercial spaces.

In summary, ground truth comparison in the Swedish data
set was carried out through discussion of suspicious events
(shown in Figure 1) with the facility managers. For the
Indian residential building data set, we surveyed the apart-
ment owners and collected the details about all the appli-
ances being used and their power ratings. We manually
matched the energy usage of some of the high-power consum-
ing appliances with changes in the raw power meter read-
ings. This exercise was used to model the energy ratings of
the appliances. Subsequently, we injected the signatures of
‘anomalous usage’ of the appliances (left on for few hours
to few days) into the raw power readings and marked it as
ground truth for our analysis. Table 1 summarizes the de-
tails about the injected anomaly events.

5. EXPERIMENTAL RESULTS
One of the major challenges with evaluating anomaly de-

tection methods is the unavailability of fine-grained ground
truth data about the actual anomalies from real-world build-

ings. Hence we adopt a similar evaluation method presented
in [9], and analyze the computed anomaly score case by case
for known abnormal energy usage events, such as lights are
not turned off during non-working hours. Further, we em-
ployed a visual analytics method, similar to [11], for visualiz-
ing the actual data and anomaly score in a convenient man-
ner, and to highlight the potential anomalies to the building
owners. Therefore, our experimental results are focusing
on analyzing the signature of some known anomalies with
respect to the temporal context sets and neighborhood in-
formation.

5.1 Baseline Methods
We compare the performance of the proposed anomaly

detection method with an existing algorithm described for
commercial building. Additionally, we also compare the per-
formance of the integrated algorithm with two simpler ver-
sions that use only self anomaly detection method.
Self Anomaly - No Context (SANC): This is the

self anomaly detection method described in Section 3.2 but
without using any temporal context information. Energy
meter readings were directly fed into Algorithm (1) without
splitting them into temporal context sets. We selected this
method to show the significance of using available temporal
context information for improving the anomaly scores for
known anomaly events.
Self Anomaly, but using Temporal Context (SATC):

This is also the self anomaly detection method described in
Section 3.2, but now using all the available temporal context
information described in Section 3.1. However, it does not
adjust the computed anomaly score using available neigh-
borhood information. We selected this method to show the
significance of using available neighborhood information for
adjusting the anomaly score to factor the influence of un-
known contexts for a year.
Self Anomaly - HP (SAHP): This anomaly detection

method was proposed by Bellala et al from HP for identi-
fying daily anomalous events for commercial buildings [2].
We chose this method because it shares a similar idea with
the self anomaly method but without using any temporal or
neighborhood information.
The baseline and the proposed anomaly detection algo-

rithms were implemented in R using its built-in package li-
braries. Also, we developed a R-Shiny web application and
released the code in open source1. We present the identi-
fied abnormal energy usage events and compare their per-
formance in the below sections.

5.2 Analysis of commercial building data
We executed the proposed anomaly detection method on

the Sweden commercial building dataset. We used a tempo-
ral context set, as discussed in Section 3.1, as the building
exhibits fixed daily and weekly cycle. A brief discussion
with the data owner revealed that all the buildings are from
a single administrative neighborhood as the baseline corre-
lation among these buildings is high, as shown in Figure 3.
Figure 5 illustrates the computed anomaly score of the pro-
posed algorithm along all the baseline methods for a single
smart meter. We selected this particular meter data as it
contains many instances of single and sequence anomalies
(as shown in Figure 1) as compared to other meters.

1https://github.com/pandarasamy/anomaly_detection
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Meter 1

Self anomaly score − No Context (SANC)

Self anomaly score − using Temporal Context (SATC)

Adjusted anomaly score − using Temporal Context and Neighbourhood (proposed)

Self anomaly score − HP (SAHP)
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Figure 5: Hourly meter readings of a Sweden commercial building with computed anomaly score by different baseline and proposed
anomaly detection methods. It shows several instances of point and sequence anomalies and how the computed anomaly score differs
using the temporal and neighborhood information.
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Figure 6: Figures shows the (a) the spread of self anomaly score without using any context vs using only the temporal context, (b)
the spread of self anomaly score only using the temporal context and using available neighborhood information, and (c) violin plot (a
combination of box and density plot) shows the differences between anomaly scores (self minus adjusted), by using different adjustment
weights for the Sweden commercial building dataset.
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Figure 7: Shows the adjusted anomaly score difference for differ-
ent weights over time for the Swedish commercial building data
set. The curve with smallest magnitude corresponds to a weight of
10% and the one with highest magnitude corresponds to a weight
of 100%. Positive values indicate a reduction in the anomaly score
after neighborhood comparison, and vice versa.

Single point anomaly

We consider three instances of noticeable single point anoma-
lies in the raw power readings which occurred on Septem-
ber 25, October 4 and November 14, as shown in Figure 5.
Both SANC and SAHP were not able to assign high score for
them, as the (total) power usage of those anomalous days,
although there was anomalous usage during night hours,
are similar to other days. However, SATC is able to as-
sign higher score as it splits the power usage of those days
into different context sets, WorkingDay - BusinessHours
and WorkingDay - NonBusinessHours. Using the neighbor-
hood information, proposed algorithm decreases the com-
puted anomaly score as the similar usage was observed in
some of the other meters as well.

Sequence anomaly

We consider three instances of sequence anomalies (abnor-
mal power consumption during weekends) which occurred
during November, February and May, for evaluating the per-
formance of the proposed anomaly detection method. We
can observe that, without using any temporal context in-
formation, SAHP outperforms SANC as it assigns higher
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Figure 8: Hourly meter readings of an Indian residential building with computed anomaly score by different baseline and proposed
anomaly detection methods. It shows several instances of point and sequence anomalies and how the computed anomaly score differs
using the temporal and neighborhood information.

anomaly score for anomalies happened during November
and May. Using the temporal context information, SATC is
able to assign higher score for all the three sequence anoma-
lies. However, after adjustment it assigns lower score for the
anomaly event that happened in Feb.

Anomaly classification

Figure 6a shows a scatter plot of self anomaly scores with
and without using temporal context sets. The spread of the
scores indicates the influence of the temporal context sets for
adjusting anomaly scores based on seasonal changes. Simi-
larly, Figure 6b shows a scatter plot of self anomaly scores
using temporal context and neighborhood adjusted scores,
for a single meter in the Swedish commercial complex data.
This visualization highlights the unique characteristics of
the proposed algorithm, by automatically classifying differ-
ent classes of anomalies in the data. The lower left corner
of the figure represents nominal operating conditions, when
both the self anomaly and adjusted anomaly scores are low.
The bottom right quadrant represents points that appeared
anomalous to the self anomaly algorithm, but their severity
was downgraded after comparison with neighbors. These
instances typically represent events such as festival periods
or summer vacations (for schools), and are unlikely to be
actual anomalies. Instead, these points denote the contribu-
tion of the neighborhood comparison step to the reduction
of the number of false positives in the anomaly detection al-
gorithm. The top left quadrant of the figure shows instances
that did not appear anomalous at first, but their severity was
upgraded after neighborhood comparison. Complementary
to the discussion above, these points represent the contribu-
tion of the neighborhood comparison towards reducing the
false negative rate in the algorithm. Finally, the top right
portion of the figure represents points that were deemed to
be highly anomalous, both by the self anomaly detection and
after neighborhood comparison. These points represent the
most confidently flagged anomalous instances, and should be
investigated by human supervisors on a high priority basis.

Adjustment using neighborhood information

After computing the initial anomaly score, we assigned dif-
ferent percentage of weights for the neighbors and calculated

the adjusted anomaly score. Figure 6c illustrates the differ-
ence between self and adjusted anomaly score while using
different weights ranging from 10% to 100%. It is observed
that up to assigning weights 60% the average difference be-
tween the self and adjusted score is increased linearly. After
that it started to decrease for weights higher than 60%, as
shown inFigure 6c. Figure 7 shows how adjustment varies
over time for different seasons with different neighborhood
weights. We can observe that higher adjustment during Jan-
uary for accounting the seasonal changes. Also, there are
some instances of higher adjustment during May to account
for the abnormal energy usage events which are also visible
in Figure 5.

5.3 Analysis of residential building data
We executed the proposed anomaly detection algorithm

over all the 24 smart meter readings in the Indian residen-
tial building data set. We used a temporal context set, as
discussed in Section 3.1, as the building occupants exhibits
regular daily and weekly cycle similar to the commercial
buildings. Further, all the buildings were from same neigh-
borhood. Figure 8 illustrates the computed anomaly score
of the proposed algorithm and the baseline methods for a
single smart meter. We injected the anomalies, shown in
Table 1, into the one of apartment meter data. Also, we
applied a temporal context set which is similar to the com-
mercial building experiment to account for the daily/weekly
energy usage cycle.

Self anomaly score

In contrast with commercial buildings, variation in the en-
ergy usage patterns are high in residential buildings. As
shown in Figure 4, the baseline correlation between residen-
tial apartments were diverse. Specific to India, as shown in
Figure 8, there are higher power consumption during sum-
mer and winter due to the extreme weather conditions. Af-
ter calculating the anomaly scores, we set a threshold of
selecting top 10% of anomalies for the analysis. Among
those 14 anomalies that we injected, SATC was able assign
higher score for all of them, whereas SAHP identified only 12
(missed those single point anomalies happened during July
and August).
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Figure 9: Figures shows the (a) the spread of self anomaly score without using any context vs using only the temporal context, (b)
the spread of self anomaly score only using the temporal context and using available neighborhood information, and (c) violin plot (a
combination of box and density plot) shows the differences between anomaly scores (self minus adjusted), by using different adjustment
weights for the Indian residential building dataset.
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Figure 10: Shows the adjusted anomaly score difference for dif-
ferent percentage of weights over time for the Indian residential
building data set. The curve with smallest magnitude corresponds
to a weight of 10% and the one with highest magnitude corre-
sponds to a weight of 100%. Positive values indicate a reduction
in the anomaly score after neighborhood comparison.

Adjustment using neighborhood information

Similar to the commercial building, we assigned different
percentage of weights for the neighbors and calculated the
adjusted anomaly score. Figure 9c plots the difference be-
tween self anomaly score and adjusted using different per-
cent of weights ranging from 10% to 100%. In contrast with
commercial buildings, the baseline correlation between the
residential apartments are diverse, as shown in Figure 4.
Due to that the maximum adjustment factor was 0.2. It
is observed that the difference between the self and ad-
justed score is increased linearly with respect to neighbor-
hood weights. Figure 10 shows how the adjustment varies
over time for different seasons while using different neigh-
borhood weights. We can observe that increase in the ad-
justment during July to account for the seasonal changes
during summer.

Similar to the anomaly characterization for commercial
data set, Figure 9a shows a scatter plot of self anomaly
scores with and without using temporal context sets. Sim-
ilarly, Figure 9b plots the self anomaly score against the
adjusted anomaly score which shows the classification of
anomaly events. In contrast with the commercial building,
the scatter plot looks narrow because of the higher variation
in the baseline correlation in residential building users.

6. RELATED WORK
Several anomaly detection methods for different domains

have been proposed in the literature for identifying poten-
tial anomalous events [4]. Authors in [16] proposed an unsu-
pervised anomaly detection method for identifying potential
abnormal energy usage days. They used robust statistical
methods based on the variability of mean and standard de-
viation in the power usage. Similar to that, authors in [3]
proposed a generalized extreme studentized deviate method
based on the variation of mean and standard deviation of
the measured data. However, these methods are limited to
identify the single point anomaly events.
Authors in [5] proposed a framework for detecting energy

usage outliers for smart buildings. They used a suffix tree
representation of the energy usage activities for grouping the
subsequence energy usage events and cluster them for iden-
tifying anomalous events. A similar method but without
using clustering algorithm was proposed in [2]. They use a
multi-dimensional scaling method for reducing the dimen-
sion of the dissimilarity matrix and assign density of a point
using the kNN algorithm.
Several multivariate anomaly methods have been proposed

in the literature. Authors in [7] presented a graph-based
algorithm for detecting and characterizing the anomalies.
Since many real-world events are interrelated, granger causal-
ity methods have also been used in the literature for time
series anomaly detection [14]. However, all these methods
do not account the context factors which influence the occur-
rence of anomaly events. An anomaly detection framework
for monitoring the Hadoop Map-reduce tasks using system-
level context information was proposed in [10]. Our pro-
posed self anomaly detection algorithm shares similar idea
with them for using the context information. However, the
adjustments of self anomaly scores across the meters in a
neighborhood is essential for energy domain for accounting
the seasonal changes.
In contrast with all the existing methods, the proposed

method uses the context information which are collected as
part of the meter data collection system. Further, we eval-
uate the proposed method using a year long data set from
both commercial and residential buildings.
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7. DISCUSSION AND LIMITATIONS
We have developed a software tool that allows end users

to explore empirical data sets, using the anomaly detection
algorithm described in this work. Demonstration of the tool
with owners of the commercial data set gave us several in-
sights about the utility of this method in the real-world. It
was noted that visualization of the data in the format illus-
trated in Figure 1 was very useful for building managers.
However, there would need to be some training involved in
order to ensure that the full utility of the visualization was
realized by the users. Additional feedback included requests
for (i) a tool-tip that would provide details about specific
data points when the mouse pointer hovered over a specific
spot, and (ii) zoom in and zoom out facility for exploring
the data set more easily.

Discussions with data owners also revealed a limitation
of the algorithm in its current form. The algorithm is re-
stricted to use data only from metering infrastructure, and
does not incorporate physical models of the components.
This approach is frequently termed as ‘black box’ in litera-
ture. Grey box models are known to improve accuracy by
reducing false positives or false negatives. However, grey
box models necessarily reduce the generality of the anomaly
detection algorithm. We have employed a purely statistical
approach for preserving the generality and applicability to
diverse geographical locations and operational characteris-
tics (residential/commercial spaces).

8. CONCLUSIONS
In this paper, we described an anomaly detection method-

ology for energy consumption data time series, that used
information from neighboring meters to qualify its output.
The neighborhood for a meter (the source of each time se-
ries) could be defined a prior, or could be identified directly
from the data. We showed that incorporating such infor-
mation was an effective safeguard against identification of
spurious anomalies (false positives), as well as against the
omission of real anomalies (false negatives). The generic na-
ture of the algorithm ensures that it is effective for a wide-
range of applications, including residential and commercial
complexes.

9. ACKNOWLEDGMENTS
Thanks to our shepherd, Hirozumi Yamaguchi, and all the

reviewers for helpful comments. Thanks to KYAB, Sweden
and IIIT-Delhi for sharing smart meter data for our research.
At the time of conducting this research, the first author was
an intern with IBM Research, India. This work was partially
supported through ITRA project, funded by DEITy, India
(Reference Number ITRA/15(57)/Mobile/HumanSense/01).
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the funding agencies.

10. REFERENCES
[1] AEO. US Energy Information Administration.

AEO2011: Annual Energy Outlook, April 2011.
[2] G. Bellala, M. Marwah, M. Arlitt, G. Lyon, and C. E.

Bash. Towards an understanding of campus-scale
power consumption. In Proceedings of the Third ACM
Workshop on Embedded Sensing Systems for

Energy-Efficiency in Buildings, pages 73–78. ACM,
2011.

[3] A. S. bin Haji Ismail, A. H. Abdullah, K. bin
Abu Bak, M. A. bin Ngadi, D. Dahlan, and
W. Chimphlee. A novel method for unsupervised
anomaly detection using unlabelled data. In
Computational Sciences and Its Applications, 2008.
ICCSA’08. International Conference on, pages
252–260. IEEE, 2008.

[4] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Computing Surveys
(CSUR), 41(3):15, 2009.

[5] C. Chen and D. J. Cook. Energy outlier detection in
smart environments. Artificial Intelligence and
Smarter Living, 11:07, 2011.

[6] J. Chen and A. K. Gupta. Parametric statistical
change point analysis: with applications to genetics,
medicine, and finance. Springer, 2011.

[7] H. Cheng, P.-N. Tan, C. Potter, and S. Klooster. A
robust graph-based algorithm for detection and
characterization of anomalies in noisy multivariate
time series. In Data Mining Workshops, 2008.
ICDMW’08. IEEE International Conference on, pages
349–358. IEEE, 2008.

[8] M. Evans, B. Shui, and S. Somasundaram. Country
report on building energy codes in india. Technical
report, Pacific Northwest National Laboratory
(PNNL), Richland, WA (US), 2009.

[9] R. Fontugne, J. Ortiz, N. Tremblay, P. Borgnat,
P. Flandrin, K. Fukuda, D. Culler, and H. Esaki.
Strip, bind, and search: a method for identifying
abnormal energy consumption in buildings. In
Proceedings of the 12th international conference on
Information processing in sensor networks, pages
129–140. ACM, 2013.

[10] M. Gupta, A. B. Sharma, H. Chen, and G. Jiang.
Context-aware time series anomaly detection for
complex systems. In SDM 13 Workshop on Data
Mining for Service and Maintenance, page 14, 2013.

[11] H. Janetzko, F. Stoffel, S. Mittelstädt, and D. A.
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