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Abstract—Buildings, with their different subsystems inter-
acting with diverse occupants, constitute a complex Cyber-
Physical-Human infrastructure. Monitoring and controlling
this complex ecosystem is essential both for efficient and
optimized operations of building subsystems and for influencing
the occupant behavior. A critical enabling technology in this
case is a middleware system for buildings that can provide
support for deriving rich inferences by fusing and analyzing
intentionally acquired or opportunistically available data from
diverse embedded sensors, human feedback, and existing build-
ing subsystems. This paper presents SensorAct, a decentralized
and scriptable middleware system architecture for developing
and scheduling various energy management applications for
smart buildings. In addition to providing support for managing
and integrating heterogeneous sensing and actuation systems
in buildings, SensorAct provides two emerging features: 1) a
scripting framework for extending and automating the energy
management functions of the modern buildings, and 2) a
rule-based sensor data and control sharing mechanism for
fine-grained sharing for building owners. We describe the
detailed system architecture and design, and provide proof of
concept through multiple third party applications built using
SensorAct APIs and deployment in diverse settings across India
and United States. SensorAct is released in open source for
community use.

Keywords-Building Management System, Middleware, En-
ergy monitoring, Internet of Things

I. INTRODUCTION

Buildings account for a significant proportion of overall

energy use in both the developing (e.g., 47% of total energy

in India [12]) and the developed (e.g., 41% in US [2])

countries. Energy consumption in buildings is spread across

diverse devices, appliances and control subsystems including

lighting, Heating Ventilation and Air Conditioning (HVAC),

security and access control. Interdependence of these sub-

systems, together with occupancy of buildings by diverse

users, make buildings a complex Cyber-Physical-Human

system. Detailed understanding of different subsystems

within buildings, together with their interactions with

diverse occupants, is critical for developing solutions that

optimize overall operations of buildings and scale across

diverse usage patterns.

Commercial buildings often employ Building Manage-

ment Systems (BMS) for monitoring and controlling their

subsystems. While striving to achieve an optimal energy

efficient control, these BMSes restrict the management to

a central facility department. To support interoperability,

many of these BMSes support Building Automation Con-

troller Network (BACnet)1. However, external third party

application development using BACnet interface is complex;

hence it restricts widespread development of such applica-

tions [15]. Such third party applications, if facilitated, can

further support integration of different building sub-systems

for improved operations. For example, information from

RFID based access control system can be used to infer the

occupancy and accordingly control the HVAC and lighting

systems.

At the other end of the spectrum, for residential build-

ings, several home monitoring and automation systems have

emerged recently. These systems typically involve moni-

toring ambient parameters (e.g., motion and temperature)

of the home, together with smart metering solutions for

detailed logging of whole-home electricity, gas, and water

consumption. Observations from such monitoring systems

are often used to control various home appliances, e.g.,

thermostats, water heating, and lighting. Correspondingly,

several cloud-based Internet of Things (IoT) and Machine

to Machine (M2M) communication platforms have been

proposed recently2. These platforms allow users to connect

their devices, including both sensors for monitoring and

actuators for controlling, to a centralized service, and build

their own applications using the observed parameters and

available actuators.

While these existing systems are a step forward towards

developing new applications for monitoring and controlling

the energy usage in buildings, their centralized architecture

results in several limitations as follows:

1) Data privacy: Detailed monitoring in both commercial

and residential buildings results in large volumes of

data that can be interpreted to infer several personal at-

tributes [16], e.g., home occupancy or wake-up times.

Privacy concerns emerging from such data results

1http://www.bacnet.org
2http://xively.com, http://www.nimbits.com, http://open.sen.se



in users refraining from publishing their data to a

centralized cloud service [18].

2) Intermittent network connectivity: Poor Internet con-

nectivity, especially in the context of developing coun-

tries [5], are de-motivating the dependence on always

connected devices to cloud-based IoT platforms2,

specifically for the buildings domain.

3) Real-time control: Data collection and control actions

occurring in a cloud are further associated with latency

issues arising out of network delays and high usage

scenarios. Some operations within buildings, e.g., turn-

ing on the sprinkler in case of fire, need real time

control that may be difficult to obtain through cloud

IoT services.

Motivated by aforementioned limitations, in this paper we

present SensorAct - a decentralized and scriptable middle-

ware architecture specifically designed for detailed moni-

toring and control in buildings. Beyond connecting devices

and thereby monitoring the built spaces, SensorAct provides

emerging capabilities including:

1) Virtual Personal Device Servers (VPDS) (See Sec-

tion II-B) for local-hosting of middleware within the

buildings to alleviate data privacy, control security and

intermittent network connectivity problems.

2) Decentralized and distributed management of build-

ing resources involving diverse devices and different

stakeholders, including the occupants, at scale. Such

decentralized architecture (keeping the middleware

closer to the devices) facilitates real time control

required for energy management applications.

3) Fine-grained selective sharing of sensor data and con-

trol with users at the global scale to alleviate control

security concerns and providing building-wise local

storage for protecting the data privacy.

4) Scripting framework (See Section III), simple pro-

gramming abstractions for extending the system fea-

tures and developing energy managing applications

involving sensing and control, analysis, alerts, and

notifications in rich form to support diverse usage

scenarios.

Together with supporting diverse usage scenarios, Senso-

rAct accommodates a rich ecosystem of existing and new

monitoring and controlling systems. Correspondingly, the

key contributions of this paper are:

• A working middleware system, released in open source,

that can run on heterogeneous platforms, allowing

participants to collect data from a variety of sensors

and perform actions thereof.

• A scripting framework to extend the middleware system

functionality with customized application logic.

• A rule-based fine-grained access control mechanism

enables sharing of sensor data and actuation control

with other participants.
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Figure 1: Tiered architecture of SensorAct and its various

subsystem components.

• Detailed evaluation of the system through extensive

deployments involving different usage scenarios and

energy monitoring applications.

A preliminary design of SensorAct was presented earlier

in [4]. Significant system development leading to multiple

real world deployments and extensive evaluation of the

scripting framework for various energy monitoring applica-

tions, are all new inclusions of this paper.

II. SENSORACT ARCHITECTURE

SensorAct adopts a tiered architecture connecting the

building subsystems with its occupants as shown in

Figure 1. The main layers of SensorAct are Virtual Personal

Device Servers (VPDS) and Brokers, which interact with

Devices that monitor and control different building spaces

at the bottom layer, and third-party applications and users

at the top layer.

A. Devices and Gateways

Existing building subsystems contain numerous sensing

and actuation points connected using diverse protocols such

as BACnet and Modbus. SensorAct maps the existing and

new sensing and actuation points as Devices by eliminating

the underlying complex naming conventions used in the

legacy building subsystems. A device in SensorAct con-

sists of a collection of sensors (monitoring the ambient

environment or the state of a building subsystem) and

actuators (that allow for changing the state of a building

subsystem). Each sensor, in turn, may consist of a col-

lection of channels which measure a particular building

phenomenon. SensorAct uses an intuitive and hierarchical

naming scheme for managing and identifying the devices

and their associated sensors/actuators, channels and readings

uniquely. As an example, a single reading from a smart

energy meter connected with the main panel is identified as



OwnerName/MainPanel/EnergyMeter1/power/ <
timestamp > / < value >.

Devices are assumed to either communicate directly or

through a gateway (e.g., LabSense, as discussed in Sec-

tion IV-A) that can bridge the sensing interface with Sen-

sorAct using its RESTful API. Each device is associated

with a device profile that contains all meta information.

A building owner can manage multiple devices owned by

him through the profile manager facilitating the creation

of device profiles. It consists of a set of key-valued paired

attributes such as its name, IP address, a collection of sensor

and/or actuator profiles, number of channels, data types and

units, location and placement.

B. Virtual Personal Device Server (VPDS)

VPDS is the primary core component of SensorAct mid-

dleware architecture. As a package, VPDS contains (a) Data

Archiver for storing and retrieving time-series sensor data,

(b) Scripting Framework for executing the custom building

applications, (c) Guard Rule Engine for access control, and

(d) Profile Manager and APIs for devices, applications, and

brokers to interact with the VPDS, as shown in Figure 1.

VPDS Owner (VO) may allow other users to have controlled

access to the devices registered with the VPDS. These

devices monitor and control the buildings owned by VO.

Each VPDS has an associated auto-generated owner’s key

which is used while registering the VPDS with a Broker for

data and control sharing.

The VPDS abstraction not only permits flexible pro-

visioning of hardware resources but also allows diverse

deployment scenarios including a VPDS hosted on a local

machine for high frequency sensors, low dependence on

Internet connectivity, high-security and low-latency sensing

and control. Such multiple VPDS instances are coordinated

through Brokers in the higher tier. VPDS-Broker architecture

further enables global access through distributed registry of

users at scale.

C. Broker

In SensorAct, a trusted broker contains a registry of users,

a registry of VPDSes, and it acts as a mediator to assist client

applications establish a connection with multiple VPDSes.

A VO needs to register her VPDS on one of the brokers

to share data and control with other users registered on

the corresponding broker. For data communication to scale

across multiple VPDSes and users managed by a single

broker, direct communication over a secured channel is

provided between users and VPDSes. More details about

sensor data and control sharing is explained in Section II-E.

D. Applications

Programming abstractions in SensorAct, using RESTful

APIs, allow easy development of third party applications

that provide a user with controlled access to sensor data

and actuators. A SensorAct user may have two roles: i)

An owner of her own devices and their correspondingly

{
NAME: “ReduceResolution”,
PRIORITY: 1,
TARGET_OPERATION: “READ”,
TARGET_CONSUMERS: [ “alice@sensoract.edu” ],
CONDITION: “NOT $(WORK_TIME)”,
ACTION: “DownSample(avg, 15min)”

}

(a) Guard rule with macros as condition

{

NAME: “WORK_TIME”,

VALUE: “[ * * 9-18 * * 1-5 ]”

}

(b) Macro definition

Figure 2: An example of a guard rule and a macro for

selective sharing of sensor data.

associated VPDS ii) A user with data and control access

as per the privileges assigned by the owner of other VPDS.

A single user could be the owner of her own VPDS and

user for some other VPDS. As an owner, a user may grant

controlled access to other users thus letting them access

sensor data from her devices or to even control them in

a constrained manner. Third party applications may provide

users with a more convenient interface to the underlying

functionality of VPDS and broker. We discuss three such

third party applications in Section IV.

E. Guard Rule Engine for Selective Sharing

Guard Rule Engine in SensorAct is designed to support

selective sharing of sensor data and actuation control with

other users as governed by the corresponding owner. All

access requests for actuators or sensor data are governed

by Guard Rule Engine. Tight control on the access is

maintained through owner-defined guard rules which are

policies for restricting access to the data and control of the

devices configured for buildings. Guard Rule Engine enables

fine grained access control by allowing the owner to define

rules based on user, group, time, location, sensor data, and

actuators. Every device registered with the VPDS has an

associated set of guard rules, created by corresponding VO,

for facilitating external (or shared) access.

The specification of the guard rules and its features such

as macros, templates, and built-in functions can be found in

[4]. Figure 2 shows an example of a guard rule and a macro.

This guard rule enforces a policy to share data during non-

working hours only, which is defined by the macro using a

Cron time expression, and reduces the data access resolution

to 15 minutes. The guard rule itself does not necessarily

contain references to specific users, sensors, or actuators, but

it can be associated to them later by its owner. This lazy-

association allows users to reuse same rules for different

users, multiple devices, or groups of devices. More details

on sharing process through Guard Rule Engine can be also

found in [4].

III. SCRIPTING FRAMEWORK

The scripting framework in SensorAct provides an ap-

plication execution environment within the middleware for

high-level scripting languages in a sandbox. Unlike other

systems, wherein external applications read sensor data

and perform control actions outside the middleware, this

framework enables building owners to inject their custom

application logic written in a high-level scripting language,
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Sensors and Actuators connected via Gateways

{
"NAME": "Monitor_AC",
"PARAMS": {

"T1": “Alice:Room1:Tempr:1",
"A1": “Alice:Room1:AC:1",
"MINS": 5,
"LIMIT": 30

}
"INPUT": {

"TIMER1": "[0 0/2 10-18 * *]"
}
"WHEN": "TIMER1",
"EXECUTE": "[monitor_ac.lua]"

}

-- monitor_ac.lua
avgTr = VPDS:readAvg(T1,5*60)
if avgTr > LIMIT then

VPDS:write(A1,VPDS:TURNON)
end

Scripting 

Framework 

Sandbox

Building users

Guard Rule Engine

Scripting API functions

Tasklet script

Tasklet description

Figure 3: Scripting framework workflow with an example Tasklet.

termed as tasklets, into the middleware to perform sophis-

ticated energy management and control operations. These

tasklets can be scheduled to read and process live sensor data

streams. The proposed Scripting Framework also provides

a set of read functions to access sensor data streams and

write functions to control the actuators. These read/write

primitives can then be used to develop complex (one-shot

or persistent) control actions providing rich support for

automation including sensor data processing, data fusion,

actuator control, and notifications. Figure 3 illustrates the

workflow of the proposed scripting framework.

A. Tasklet Workflow

A tasklet in the scripting framework is a piece of light-

weight non-blocking script that performs a particular set

of operations. As shown in Figure 3, it consists of tasklet

description and tasklet script. While the tasklet description

contains meta information about the tasklet, such as re-

sources (sensors and actuators identifier) to be used, parame-

ters, scheduling and triggering conditions, tasklet script con-

tains the application logic in a high-level scripting language.

More details about tasklet description can be found in [4].

A tasklet scheduler receives the tasklet execution requests,

submitted using the corresponding tasklet management API

provided by the VPDS, and it is responsible for scheduling,

managing, and controlling the tasklet throughout its life-

cycle. Once a tasklet is scheduled for execution, the tasklet

scheduler first classifies and schedules the tasklet, based

upon the identifiers used in the When primitive of the

description, as one of the following categories:

One-shot: One-time and immediate execution of a tasklet

script. For example, querying the current status of

a sensor or instantaneous switching of an actuator.

Periodic: Executing a tasklet script whenever timer

elapses to perform periodic operations. For exam-

ple, switch on my office air-conditioner at 9AM

only on weekdays or email me the electricity usage

summary every day at 8PM.

Event based: Executing a tasklet script whenever a change

in the value of sensors or actuators is observed.

For example, switching off lights when a window

is opened.

map read(DeviceId, duration(in seconds))

map read(DeviceId, startTime, endTime)

number read(DeviceId, duration, [sum|count|min|max|mean] )

number read(DeviceId, startTime, endTime, [sum|count|min|max|mean] )

string plot(DeviceId, duration)

boolean write(DeviceId, status=ON|OFF|value)

boolean email(to, subject, message [,plot])

boolean sms(to, message)

Table I: Primitive API functions in Scripting framework available
to use in Tasklet Scripts.

Tasklet manager provides an isolated execution environ-

ment for each tasklet and restricts any interaction among

them for sensitive building control applications. By default, a

tasklet inherits the privileges of a user who submitted it. All

read and write operations on sensors and actuators performed

from tasklets go through Guard Rule Engine. Correspond-

ingly, tasklets can only perform operations allowed for a user

invoking them, thus protecting against unauthorized access.

B. Tasklet API Functions

The scripting framework in SensorAct provides a set of

primitive API functions as shown in Table I, in order to per-

form various runtime operations. Tasklet scripts can invoke

these low-level API functions and it enables developers to

create and schedule custom building control and automation

applications. While expert users can write complex tasklet

scripts on their own, novice users can use an interactive

web interface to create simple automation applications. We

also plan to provide tasklet templates for commonly used

applications, so that users can easily create tasklets by filling

in only the required parameters.

The proposed tasklet framework provides a platform to

implement and schedule several energy management tasks

within the middleware system. Examples are 1) inferring

high-level rich occupant-specific context information, such

as occupancy and usage patterns, by fusing several raw sen-

sor and actuator values; 2) automation of the routine building

control activities performed by the occupants in their day-

to-day life, e.g., pre-heating or pre-cooling the workspaces

in advance; 3) custom creation of coordinated appliances

based upon detected building events, e.g., switching off a

meeting room may result in switching a group of devices

together or in a particular sequence; and 4) development

of an automated alert or notification system for monitoring

and management of building premises, e.g., alerting the

facility management team in case of any abnormal energy

consumption. In Section V, we present a list of energy

management applications created using the proposed tasklet

framework.

IV. IMPLEMENTATION

A. Gateways and Devices

Gateways interconnect existing and new sensors and ac-

tuators in the buildings with a VPDS. In the current im-

plementation, three gateways are supported: 1) LabSense11

for interfacing Z-Wave based ambient sensors (temperature,

light intensity, motion, and door contact status) in existing

Home Automation Systems, Modbus based smart energy



Component VPDS API endpoints

User /user/{register|list}
Device /device/{add|delete|get|list}

/device/template/{add|delete|get|list}
Guardrule /guardrule/{add|delete|get|list}

/guardrule/association{add|delete}
Tasklet /tasklet/{add|delete|get|list}

/tasklet/{execute|cancel|status}
Data /data/{upload/wavesegment|query}
Share /device/share

Component Broker API endpoints

User /user/{register|login|list}
VPDS /vpds/{register|get|list}
Device /device/{search|share}

/device/{user|owner}/shared

Table II: A list of APIs supported by different components

of the SensorAct architecture.

meters, SNMP based Raritan3 power distribution unit, and

Modbus based Veris and Eaton4 energy meters, 2) sMAP [9]

to communicate with several commercial energy meters and

HVAC systems using different protocols such as Modbus

and BACNet, and 3) A custom built Wi-Fi based Flyport5

module to interface ambient sensors and actuation relays.

These gateways push sensor readings in a uniform format,

as described in [4], to VPDS using RESTful APIs, shown

in Table II, and execute the actuation commands received

from the building control applications.

B. VPDS and Broker

Various VPDS and Broker components, as explained in

Figure 1, were implemented in Java using open source tools

and the code was released for community use6. SensorAct

exposes a rich set of RESTful APIs for most of its func-

tionalities. Such open APIs enable easy integration with

other systems and allow developers to write custom third

party (stand-alone, web, or mobile based) applications for

extending the system features, e.g., visualization, scripting,

access control, and sharing. Table II lists the APIs currently

implemented for various components in VPDS and Broker.

The scripting framework in SensorAct uses Quartz7 library

to schedule and execute tasklets. The current implementation

supports Lua8 and Jython9 to write tasklet scripts. Lua was

chosen because it is a light-weight, compact, and easy-to-

learn scripting language which also has been widely used to

program home automation systems. Jython, an implemen-

tation of the Python scripting language in Java, provides

rich support for data processing. Further, a VPDS instance

can be hosted on multifarious devices including single board

computers such Raspberry Pi.

C. Applications

Three third-party applications were implemented using the

VPDS and Broker APIs and they are explained below.

3http://www.raritan.com/
4http://www.veris.com, http://www.eaton.com
5http://www.openpicus.com
6http://github.com/iiitd-ucla-pc3
7http://quartz-scheduler.org
8http://www.lua.org
9http://www.jython.org/
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Figure 4: Various deployment scenarios of SensorAct architecture.
Four VPDSes deployed across different locations were connected
to a common broker hosted in IIIT-Delhi.

Web portal: It is a configurable stand-alone web appli-

cation that interacts with a broker and registered VPDSes

using the SensorAct APIs. Both VPDS owner and other users

can use this application to manage devices, guard rules, and

tasklets based upon granted privileges. An integrated plotting

application also enables users to visualize their sensor data.

Time and presence based actuation: It is an intuitive

web interface, extended from the web portal application,

which allows users to actuate their devices remotely based

on time and presence, e.g., pre-heating/cooling a workspace.

The user interface makes use of tasklets to allow users to

switch their appliance “now”, “once” at a specific time, or

“periodically” at a regular time interval. Guard rules are

used to restrict users to actuate the devices in their own

spaces only. This system is currently under deployment in a

commercial building for lighting control.

Mobile application: An Android application was devel-

oped whereby users can specify their Broker credentials and

correspondingly manage the devices owned or shared with

them.

Further, in order to simplify the SensorAct system instal-

lation for a building, all VPDS, broker and user interface

components of SensorAct were packaged into a Virtual Ma-

chine image. Detailed installation instruction manual were

documented and the usage of the system was evaluated using

an user study (See Section V-C).

V. EVALUATION

The proposed SensorAct architecture is evaluated based

on multiple real-world deployments for supporting different

usage scenarios. Particularly, the utility of the proposed

tasklet framework is shown for various energy monitoring

and alerting applications. Further, a user study was per-

formed to evaluate the different aspects of deployment of

SensorAct in a student dormitory building.

SensorAct was deployed in four different settings as

illustrated in Figure 4: (1) Campus wide energy monitoring

at IIIT-Delhi, India, (2) Student dormitory deployment at

IIIT-Delhi, India, (3) Research lab in UCLA, USA, and (4)



Deployment Research Wing Student Dorms IIITD Campus NESL, UCLA

Purpose Occupancy sensing
and data sharing

Occupancy sensing
and data sharing

Energy monitoring and
alerts

Occupancy sensing and energy
monitoring

Scale Single building 21 student dorms 6 buildings Research lab

Platform Virtual machine Laptop and PCs Virtual machine Virtual machine and MiniITX

Sensors Ambient sensors
(14)

Ambient sensors
(21)

Electricity meters(180) Ambient sensors and
electricity meters(3)

Sampling rate 1 second 1 second 30 seconds 2 seconds

Gateway &
protocols

FlyPort, WiFi FlyPort, WiFi sMAP, Modbus LabSense, ZWave, Modbus

Duration 2 months 1 month 4 months 8 months

Users 20 21 2 15

Table III: Different deployment details of SensorAct system. Ambient sensors include Temperature, light intensity, motion

and door contact status

Research wing at IIIT-Delhi. Each deployment was done

with different requirements, devices, gateways, users, and

scales as shown in Table III. Separate VPDS instances were

used for each deployment, and they were registered with

a common broker, hosted at IIIT Delhi, for sharing sensor

data and control with users across different buildings. In

each deployment, the corresponding owner or tenant of

the building managed the VPDS and granted privileges to

other occupants who all were registered themselves with the

common broker, if required.

A. Campus Wide Electricity Monitoring at IIIT-Delhi

One of the largest deployments of SensorAct involved

monitoring the electricity usage of all the buildings in IIIT-

Delhi campus. IIIT-Delhi campus was newly constructed two

years ago in a space of 25 acres. It consists of five buildings:

academic, facilities, faculty apartments (30 flats), mess and

hostel (400 dorm rooms) buildings. All these buildings are

equipped with a commercial BMS system for managing

the various building operations, under the administration

of a facility manager (FM). In addition to the commercial

BMS system, all the buildings (each floor and flats) were

instrumented with over 180 smart meters measuring various

electrical parameters. A sMAP based archiver was used

for collecting meter readings at every 30 seconds. Existing

BMS subsystems, such as HVAC, were also interfaced with

the sMAP archiver using BACnet and Modbus bridge. A

separate sMAP to SensorAct gateway was implemented for

uploading all real-time measurements to SensorAct. As per

FM’s requirements, three energy management applications

were created, to be managed by him, using the proposed

tasklet framework.

1) Abnormal street light usage detection: IIIT-Delhi cam-

pus contains pathways around the campus for about 2

kilometers. There are about 135 street lights installed in the

path way. These street lights are manually switched on in

the evening and switched off in the morning by an operator.

They consume over 6 kilo-watts of power. From the street

light meter readings, as shown in Figure 5, we observed that

there were some suspicious electricity usage events during

day time and occasional events during night time as well.
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Figure 5: Daily electricity usage pattern for street lights (6:30pm
to 6:00am every day) for 12 days and some abnormal energy usage
events (marked in red).
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Figure 6: Electricity usage patterns of sports area lights for 12
days. Few street lights around the sports area consuming about 0.9
kilo-watts of power are used from 6pm to 6am every day. Each
spike in this plot corresponds to the usage of flood lights in the
sports area.

Hence, to monitor such abnormal electricity usage events by

street lights, two tasklets, one for day time and another for

night time were setup. They computed average electricity

consumption of the street lights every five minutes. If the

average consumption was above a threshold (derived based

on our observation), these tasklets sent an email and SMS to

the FM for taking necessary action. Over the course of past

one month of this setup, these tasklets detected two such

abnormal electricity usage events and notified the FM. The

FM asked the facility support team to check the street lights

and its power meters. FM also suggested that such period

monitoring tasklets for street lights are essential, particularly

in India, as electricity theft is not uncommon.

2) Sports area usage summary: IIIT-Delhi campus has a

sports area that consists of a basket ball court, a foot ball

court and a common play ground. The entire sports area is

equipped with several flood lights and they consume over

10 kilo-watts of power when they are in use. At present,

students are advised to turn on and off these lights whenever
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Figure 7: Campus-wide total commercial electricity usage (from
two transformers) for 1 week. The spikes in transformer 1 corre-
sponding to the electriciity consumption of HVAC systems, that
consusumes over 100 kilo-watts.

they want to play during night time. For accountability and

to make policies for the sports area usage, FM wanted to

know how many hours these sports area was being used

every day and the corresponding energy usage.

Since the sports area lights were connected through a

separate smart meter, we monitored the electricity usage for

a month to know the baseline usage. Figure 6 illustrates

power consumption of the sports are lights (all the peaks)

along with some other constant load for 12 days. Based on

our observation, a periodic tasklet was created and it was

scheduled to run at 8 A.M. everyday. The tasklet reads the

smart meters readings for the previous night and filtered

out the readings only for the sports area usage based on

a known threshold value. The tasklet is also configured to

send a summary email to the FM about how many hours the

sports area was used and the total energy consumption.

3) Critical energy usage alert: IIIT-Delhi campus re-

ceives two power lines from the grid, one for commercial

and another for residential usage. While the residential

power line is being used for faculty apartments and student’s

hostels, commercial power line is being used by the rest

of loads in the campus. External commercial load from

the grid is stepped down using two transformers, one for

supplying high-voltage loads such as HVAC, and another

one for connecting commercial usage such as lighting and

IT devices. As shown in the Figure 7, commercial energy

usage for a typical working day is over 3,000 units and it

varies based on many other factors. In order to monitor the

overall energy usage, FM wanted to develop an application

that can alert him when the total energy consumption of the

current day exceeds the previous day.

A periodic tasklet was created for monitoring the campus

wide energy usage in real time. The tasklet was scheduled

to be run at every five minutes. The tasklet script was

configured to perform the following tasks in each run: 1)

it reads the previous day and current day energy usage from

the smart meters which are connected with the corresponding

transformers, and 2) it compares them and sends an email

and SMS to the FM if the current day energy usage exceeds

the previous day consumption, 3) Since this is a periodic

tasklet and to avoid continuously sending the notification on

successive alerts, it was configured to send alerts two times

maximum in a day.

B. Research Lab at UCLA

In this deployment, SensorAct was deployed for a 1,200

square feet university research lab, occupied by 12 graduate

students, in UCLA for occupancy and electricity monitoring

applications. It was instrumented with several sensors in-

cluding 1) high frequency multi channel Raritan, Eaton, and

Veris power meters measuring several electrical parameters

of the lab servers, devices, and power outlets, and 2) Z-Wave

based Aeon Labs door sensors and HomeSeer multi-sensor

(measuring motion, temperature, and light intensity level)

was interfaced with Mi Casa Verde Vera10

LabSense11 gateway was used to pull data from all of

these sensors and push it to SensorAct. FireSense12 system

was also used to monitor the real time network traffic of the

lab and the network event logs were pushed to SensorAct

in real time. Permission to access sensor data and create

tasklets was shared with one of the graduate student at IIIT-

Delhi, who created a computed sensor for presence detection

(discussed in Section IV) and performed occupancy based

experiments.

Occupancy and energy usage summary: Based on this

setup, a periodic tasklet was created for monitoring the

occupancy and electricity usage of the lab. The tasklet was

scheduled to run at 12 A.M. midnight every day to send a

summary report to the lab members. The tasklet script was

primarily doing three functions: 1) it decided whether some

one is entering or exiting the lab by fusing the door status

(open/close) with motion sensor events, 2) it compares the

entry and exit events of the two doors and decides the first

entry and last exit time of the lab, 3) it aggregated the total

power consumption of a day and created a plot of power

consumption at 5 minutes, and 4) finally, it sent a summary

email mentioning how many hours lab was opened on a

particular day and how was the total power consumption

during that time. This energy usage summary report was

useful for giving insights about the usage patterns of the lab

and for increasing energy usage awareness of the occupants.

Further, the inferred occupancy information can also be used

to pre-heat/cool the lab.

C. Student Dormitory Deployment at IIIT-Delhi

In this deployment, in order to validate the utility and easy

deployment of SensorAct middleware system, 21 student

groups (each with 2 students at IIIT-Delhi were engaged.

They deployed Flyport based Wi-Fi nodes in student dor-

mitory rooms, collecting motion, temperature, and window

status information every second, by following the installation

manual. One of the faculty coordinator hosted a central

VPDS on one of the servers and registered it with the

broker at IIIT-Delhi. Students were then asked to register

themselves and room occupants (for the case when they are

10http://micasaverde.com, http://www.homeseer.com
11https://github.com/nesl/LabSense
12https://github.com/nesl/FireSense



deploying in someone else’s room) on the broker. Faculty

coordinator first shared privileges with the engaged student

groups and allowed them to create devices in his VPDS

though they were not allowed to see data from the devices

added by them. This privilege was revoked after two days,

and the added devices were shared with the corresponding

room occupants to let them decide whom they want to share

data. While, the study mandated each student to collect only

2 days worth of data from their individual deployment, a

total of 100 days worth of data together from all the groups

was reported by the students.

A survey was conducted at the end of the deployment

to get feedback from these students on different aspects

of using the SensorAct system. Overall 17 student groups

responded to the survey at the end of the study. Among them

16 student groups had no prior experience with uploading

data to a server or cloud system such as SensorAct. More

than 80% of the respondents mentioned that SensorAct

installation and configuration on their individual laptops,

with different OS, was easy. Approximately 45% of respon-

dents gave their preference for local hosting of SensorAct

VPDS instead of cloud, due to privacy reasons, if they were

to deploy SensorAct for monitoring and control in their

homes. Students used SensorAct for basic data collection and

visualization while the occupants used sharing capability for

data and control to provide access of their devices to their

friends. 64% of them found SensorAct to be a good and

usable system. More than 90% of responses rated SensorAct

documentation to be detailed enough with 73% of them

asserting that, with the current level of documentation, a

new person can setup SensorAct system without any help.

More than 90% of the responses were positive about the

usability of the browser application that was used as a front

end for the study.

VI. RELATED WORK

A. Building Management Systems

Several commercial building management systems

(BMS)13 and home automation systems10 are currently

available in the market for monitoring, controlling, and

automating various building subsystems and operations.

Typically, they comprise of several isolated subsystems

each performing a particular task such as fire alarms,

security and access control and HVAC. While they include

a large number of sensing points spread across a building,

data from these sensors are usually inaccessible to building

occupants as these systems are normally controlled and

managed by a central facility department. While many

commercial buildings already have some form of BMS

in existence, SensorAct can be used to augment them

to develop novel occupant-centric applications such as

personalized control of workspaces. Gateway applications

can be easily developed to interface such M2M applications

13http://www.trane.com, http://www.johnsoncontrols.com

with SensorAct (as shown in Figure 1). Further, higher costs

typically associated with such BMSs, prohibit their usage

across small deployments such as in residential homes.

Home automation systems, try to fill in the gap providing

comfort to the occupants, using local storage and several

automation scripts. However, they provide limited support

for fine-grained data and control sharing across multiple

homes and users, supported extensively in SensorAct.

B. Research Systems and Architectures

Several research systems pertaining to connecting and

sharing sensors at Internet scale, such as SenseWeb [13],

SensorWeb [8], GSN [1], and WattDepot [6] have been

developed and deployed in the recent past. However, these

systems are limited primarily to sensory data aggregation

and visualization and provide minimal sharing capabilities.

Some research software systems have been proposed in the

literature that provides an abstraction over diverse devices

and enables uniform interfaces to access them [14], [11].

For example, HomeOS [11] addresses the interoperability

and usability issues by providing a PC like abstraction

over the networked devices as peripherals for both users

and developers. Sensor Andrew [17] shares some common

design goals with SensorAct. It focuses on a large scale data

aggregation from diverse sensors and event-based control for

building operations. However, the data and control sharing

mechanism is at coarse-grained level, based only on user

identity. BuildingDepot [3] focuses on managing network of

buildings by isolating the data, users, and privilege manage-

ment from each other. Similarly, Building Operating System

Services (BOSS) and Building Application Stack [10]

enable writing portable and fault-tolerant applications on top

of diverse physical resources present in buildings. Specific

to residential buildings, VHome [18] provides an isolated

application execution environment for data analysis. Though

VHome shares several design goals with SensorAct, it

provides an application runtime to execute Cloud Based

Application, focusing only on energy data analytics. Further,

access control mechanism in VHome supports only time

and location based energy data sharing, whereas SensorAct

supports fine-grained sharing.

C. Cloud-based IoT platforms

Several public cloud-centric IoT platforms exist today for

collecting, archiving and visualizing the real time sensory

data such as Xively, Nimbits, and Sen.se. While these

services provide rich support for data aggregation and visu-

alization of sensory data collected from diverse devices, they

provide inadequate or limited support for IoT applications

specifically pertaining to the buildings domain: 1) They

provide limited capabilities for sharing the collected sensory

data as they follow “all-or-nothing” model based only on

user identity. Since the sensory data collected from buildings

carry several forms of occupancy and usage patterns about

the buildings, devices and occupants [7], controlled sharing

is required to protect the sensitive sensory data collected



from buildings. 2) They provide limited or no support for

controlling the devices and automating their operations.

A few services such as Sen.Se provide remote actuation

support but they handle simple use cases wherein control

is manual or is based on events, e.g., whenever motion is

detected, switch on/off an appliance. SensorAct architecture

allows for easy support of complex energy management

applications using the scripting framework. In addition to

the features provided by these systems, SensorAct supports

rule-based selective sharing model for sensory data.

VII. CONCLUSIONS

In this paper, we presented the design and development

of SensorAct - an open source distributed and scriptable

middleware system for energy management in buildings.

SensorAct architecture supports several novel features in-

cluding (i) Virtual Personal Device Servers (VPDS) for local

hosting the middleware within the building, (ii) Scripting

framework within the middleware for providing rich support

for developing and automating energy management appli-

cations, and (iii) A rule-based fine-grained access control

mechanism enables sharing of sensor data and actuation

control with other users. Validation of the developed system

was done using multiple deployments, from residential to

commercial buildings, spread across India and USA.
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