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Abstract

Buildings are responsible for 30—40% of the anthropogenic greenhouse gas
emissions and energy consumption worldwide. Thus, reducing the overall
energy use and associated emissions in buildings is crucial for meeting sus-
tainability goals for the future. In recent years, smart energy meters have
been deployed to enable monitoring of energy use data with hourly or sub-
hourly temporal resolution. The concurrent rise of information technologies
and data analytics enabled the development of novel applications such as
customer segmentation, load profiling, demand response, energy forecast-
ing and anomaly detection. In this paper, we address load profiling and
benchmarking, i.e., determining peer groups for buildings. Traditionally,
static characteristics, e.g., primary space use (PSU) together with the an-
nual energy-use-intensity, EUI, have been used to compare the performance
of buildings. Data-driven benchmarking approaches have begun to also con-
sider the shape of the load profiles as a means for comparison. In this
work, we identify three fundamental load shape profiles that characterize
the temporal energy use in any building. We obtain this result by collecting
a dataset of unprecedented variety in size (3,829 buildings) and primary use
(75 programs), and applying a rigorous clustering analysis followed by en-
tropy calculation for each building. The existence of fundamental load shape
profiles challenges the man-made, artificial classification of buildings. We
demonstrate in a benchmarking application that the resulting data-driven
groups are more homogeneous, and therefore more suitable for comparisons
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between buildings. Our findings have potential implications for building
and urban energy simulations, portfolio management, demand response and
renewable energy integration in buildings.

Keywords: Building Energy, Load Profile, Energy Benchmarking,
Unsupervised Learning, Visual Analytics, Data Analytics

1. Introduction1

The building sector represents the largest portion of energy consumption2

and greenhouse gas emission worldwide. In the United States alone, residen-3

tial and commercial buildings account for 40% of the energy consumption4

and 38% of CO2 emissions [1]. With increasing per capita energy usage and5

rapid urbanization, the energy demand in the building sector continues to6

increase at unprecedented level [2]. Thus, reducing the overall energy usage7

and associated emissions in buildings is crucial for meeting sustainability8

goals. As as result, there are tremendous research and entrepreneurial ac-9

tivities by both public and private stakeholders to optimize energy usage in10

buildings [3, 4, 5, 6]11

To this end, smart meters have been deployed around the world dur-12

ing the last decade. For example, 70 million smart electricity meters were13

installed in the US by 2016 [7]. The availability of smart meter data en-14

ables both utilities and consumers to have a better understanding of how15

energy is spent in buildings. In general, the rise of information technolo-16

gies fused with energy system has resulted in energy-cyber-physical sys-17

tems, or e-CPSs, enabling the development of several fine-grained energy18

management applications, such as consumer segmentation and load profil-19

ing [8, 9, 10, 11], demand-response [12, 13], energy forecasting[14, 15], and20

anomaly detection [16, 17, 18].21

1.1. In Search of Alternative Means of Classifying Buildings22

In this paper, we address the topic of data-driven load profiling and23

benchmarking. Traditionally, buildings are classified into man-made cat-24

egories, e.g., residential, commercial, and various sub-categories, such as25

education, office, and retail, based on their Primary Space Usage (PSU).26

Primary space use, also known as primary space activity, is a concept that27

is used extensively within benchmarking systems and energy consumption28

surveys, including the Commercial Buildings Energy Consumption Survey29

(CBECS) in the United States [19]. These PSU classifications are the key30

component when defining the Building Type Definition, a label that is in31
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most aspects of performance analysis, including benchmarking. The prob-32

lem with these classifications is that they are inflexible to the reality of33

modern buildings: entities that are considered a whole building do not of-34

ten wholly fit into these categories due to an increasing diversity of uses35

and loads in buildings. These buildings are often referred to as mixed use36

colloquially, but are often still officially given a rigid building type label.37

The CBECS data collection protocol instructs that buildings used for more38

than one of the activities described are assigned to the activity occupying39

the most floorspace. This type of fuzzy classification creates a situation in40

which a number of buildings are placed in peer groups that may under or41

over-estimate their relative energy performance.42

Using the concept of PSU and building type, several building energy43

benchmarking and labeling methods have been proposed in the literature [20,44

21, 22, 23]. The objective of these benchmarking methods is to derive groups45

of similar buildings, which can highlight whether or not a specific building46

in this group is performing better or worse than its peer group. One of the47

widely used benchmarking methods is EUI, or energy-usage-intensity, which48

is simply the annual energy consumption divided by the square footage of49

the building.50

Since the EUI oversimplifies the energetic performance of a building,51

and capitalizing on the aforementioned deployment of advanced metering52

infrastructures, data-driven building energy benchmarking methods have53

been proposed. In contrast with using the static attributes of the building,54

e.g., the floor area, and coarse-grained energy usage data (monthly or annual55

bills), data-driven methods use fine-grained energy usage data, typically56

sampled at every hour, and attempt to capture unique load characteristics57

independent of the artificial man-made attribute.58

1.2. Research Contribution59

In this paper, we hypothesize that fundamental load shape profiles exist60

that characterize the energy use of a building. Fundamental profiles are61

independent of a building’s man-made, artificial label, and, if exist, would62

allow to label buildings by their temporal energetic behavior. As a con-63

sequence, natural, data-driven peer groups buildings can be formed, with64

similar energetic behavior rather than with similar artificial label, resulting65

in much more meaningful comparisons. We discover these profiles using both66

(1) a diverse dataset composed of an unprecedented variety in size (3,82967

buildings), primary use (75 building programs), and location (Fig. 1), and68

(2) and a thorough clustering analysis.69
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We add to the existing literature by identifying fundamental load shape70

profiles of a building in two steps. First, we demonstrate that the daily load71

profiles of almost all buildings (≈ 94%) in our dataset can be clustered into72

three representative groups. Second, analyzing the entropy of the formed73

clusters for each building, we show that almost all buildings exhibit a con-74

sistent energy use pattern, i.e., one of the three load profiles is dominant: it75

occurs for more than 50% of the days. Thus, we identify three fundamental76

load shape profiles that can be qualitatively characterized by having either77

a morning, a mid-day or an evening peak of energy use, respectively. We78

then show that regrouping the buildings according to these profiles, e.g., for79

benchmarking, results in much more homogeneous groups.80

The paper is organized as follows. The next section presents an overview81

of the related literature. In Section 3, we present our dataset and methodol-82

ogy. Section 4 details the results, while Section 5 discusses the implications83

and possible applications of the discovered load shape profiles. Section 684

concludes the paper.85

2. Literature Review86

2.1. Load profiling87

Existing data-driven load profiling approaches are broadly divided into88

direct and indirect clustering methods [12, 24]. While direct clustering ap-89

proaches, as the name implies, directly use the raw meter data to the clus-90

tering algorithms, indirect clustering approaches use the features extracted91

from the meter data.92

The most commonly used clustering algorithms for load profiling are k-93

means, fuzzy k-means, weighted fuzzy average k-means, follow-the-leader,94

hierarchical clustering, and Self Organizing Maps (SOM). Their advantages95

and disadvantages with respect to different similarity measures and validity96

metrics have been studied in [25, 26, 27, 28, 29]. These traditional clustering97

methods have also been extended for modeling some specific attributes of98

high-volume time-series energy data. For example, in [30], authors proposed99

a dynamic clustering method, by extending the traditional k-means, for100

capturing time-dependent seasonal trends.101

Whereas, in indirect clustering, suitable features are extracted from the102

raw smart meter data before using the clustering algorithm. Smart meter103

data are inherently time-series with high dimensionality. Hence dimension-104

ality reduction methods are applied before clustering. The most common105

dimensionality reduction method is Principle Component Analysis (PCA),106
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which is explored in [31]. Other similar methods are using Support Vec-107

tor Clustering (SVC) [32], K-Mediods [33], and Neural Networks [34], and108

C-Vine copula mixture model [35].109

While a plethora of studies exist, they are limited in their generalization110

due to either small sample sizes, specific to a particular building use type,111

limited geographic variation, focus on algorithms, or case study character.112

2.2. Benchmarking studies113

Several benchmarking methods have been proposed in the literature with114

varied complexities. The EUI is one of the widely used methods as it is115

simple, and easy to compute and interpret [36]. However, EUI makes a116

strong assumption that energy usage and gross floor area scale linearly,117

which is not the case with many buildings. Further, it fails to normalize118

other important factors (e.g., age, occupancy, electrical systems, etc.,), thus119

making it unreliable when comparing heterogeneous building use types [20].120

EPA’s Energy Star [37] is another popular rank-based benchmarking sys-121

tem. It can normalize energy usage for a variety of factors and it finds the122

average consumption for a group of input buildings using national survey123

data. The Energy Star scores are based on residuals from ordinary least124

square (OLS) regression models, but that includes statistical noise, mea-125

surement errors, any unknown factors, and it is sensitive to outliers in the126

data. This rating system uses the CBECS survey as a data source to create127

the peer groups for submitted buildings.128

Several existing studies utilized advanced machine learning based ap-129

proaches, such as Artificial Neural Networks (ANN) [38, 39, 40, 41], clus-130

ter analysis [42, 43], decision trees [44], data envelopment analysis [45],131

and stochastic frontier analysis [46, 47], for developing benchmarking mod-132

els. While these systems address specific issues with existing benchmarking133

systems, such as generalizable, interpretable, robustness, etc., they have134

been monotonously validated for specific building use types (hotels [42],135

schools [40], office [44], government [45], residential [41, 46], commercial [39]),136

geography and climate zones, thus limiting their wide applicability across the137

world. Further, most of these studies used a limited set of building character-138

istics (floor space, age, occupancy, number of floors, etc.) for benchmarking.139

In contrast, in this paper, we identify three fundamental load shape profiles140

from smart meter readings, as a baseline for grouping similar buildings for141

benchmarking.142
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Figure 1: Locations of data sources in the United States (left), Europe (middle), and
Australasia (right)

3. Methodology143

3.1. Data sources and organization144

Multiple sources are used to collect building energy data for this study145

(see Tab. 1). Each dataset contains hourly energy consumption with labeled146

building informations, i.e., location, program, and gross area. In total, we147

collected hourly data from 3,829 buildings with 2,365,563 daily profiles of148

energy consumption. Fig. 1 illustrates the various global locations from149

where the data were collected. Our dataset contains both residential and150

non-residential buildings, and each individual dataset has different data col-151

lection period. Notably, all data sources are publicly available for academic152

purpose.153

We joined the individual datasets into a single hierarchical data format154

5 (HDF5) file to serve as our database [54]. The HDF5 data format is par-155

ticularly useful for our study, because our dataset contains large amount156

of building energy data with hierarchical information. Fig. 2 shows the157

structure of the database. It contains the unique identifier of the buildings,158

and temporal and a metadata folders for each building. In the temporal159

folder, hourly energy consumptions are stored for each year based on their160

availability. The first meta folder stores categorical meta data, e.g., indus-161

try, sub-industry, primary space usage (PSU), and climate zone. Industry162

and sub-industry is high level category of buildings, i.e., residential, educa-163

tional, governmental, and others. More precisely, we detailed the program164

of each building by PSU types which is defined in similar studies [55, 56, 57].165

The PSU indicated for each building was either collected from the facilities166

management department of the source institutions, scraped from web-based167

resources that accompanied the raw temporal data, or through a best guess168

estimate from the research team based on discussions and analysis. The169

PSU categories for these buildings mostly mirror those used for the CBECS170
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Dataset Location No. of
buildings

Type Date Range Ref.

Anonymous Building Data
Genome (BDG)

Various 342 Non-
Residential

2010-01-01—
2015-12-31

[48]

Arizona State University (BDG) Tempe,
AZ, USA

174 Non-
Residential

2015-01-31—
2015-12-31

[48]

BuildSMART DC Washington
DC, USA

499 Non-
Residential

2016-01-01—
2016-12-31

[49]

Cardiff Council/Carbon Culture
(BDG)

Cardiff,
UK

161 Non-
Residential

2015-11-30—
2016-12-01

[48]

CER Smart Meter Data Ireland 1,781 Residential 2009-07-14—
2010-12-31

[50]

EnerNOC Green Button Data
(BDG)

Various 348 Non-
Residential

2012-01-31—
2014-12-31

[48]

MIT Cambridge,
MA, USA

87 Non-
Residential

2014-01-01—
2016-12-31

[51]

Pecan Street Inc. Austin,
TX, USA

113 Residential 2012-03-19—
2017-09-16

[52]

UK Government Buildings/
Carbon Culture (BDG)

UK 34 Non-
Residential

2014-12-01—
2015-11-30

[48]

University College London/
Carbon Culture (BDG)

London,
UK

53 Non-
Residential

2014-12-01—
2015-11-30

[48]

University of California - Berkeley
(BDG)

Berkeley,
CA, USA

29 Non-
Residential

2012-01-01—
2016-12-01

[48]

University of Greenwich/
Carbon Culture (BDG)

Greenwich,
UK

46 Non-
Residential

2014-12-01—
2015-11-30

[48]

University of Texas at Austin Austin,
TX, USA

111 Non-
Residential

2009-01-15—
2017-08-20

[53]

University of Southampton (BDG) Southampton,
UK

51 Non-
Residential

2014-12-01—
2015-11-30

[48]

Table 1: Summary of data sources
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Figure 2: Data structure: temporal folder contains hourly energy consumption for each
year; meta folder contains categorical information (industry, sub-industry, primary space
usage, climate zone) and numerical information (gross area, energy use intensity)

survey [19]. In addition, climate condition is labeled based on building lo-171

cation and International Energy Conservation Code (IECC) climate zone172

map [58]. Secondly, the numerical meta data folder contains gross area (m2)173

and energy use intensity (EUI) (kWh/m2/year).174

3.2. Discovering fundamental load shape profiles175

To investigate fundamental building energy consumption patterns, we176

developed a load profile based clustering framework, shown in Fig. 3. It177

consists of three steps: (1) Preprocessing to eliminate incomplete load pro-178

files and apply Z-normalization. (2) Clustering using unsupervised learning179

techniques, i.e., K-means, Bisecting K-means, and Gaussian Mixture Mod-180

els. (3) All clustered profiles are then re-assembled on a building level, and181

we calculate the cluster distribution, i.e., the frequency of each cluster, for182

each building. We detail each process in the following.183

1. Preprocessing We extract daily profiles of energy consumption from184

our dataset. Let t ∈ [1, 24[ be the hour of day, and Ld(t) the hourly185

energy consumption of a building on day d in kWh. The daily profile186

is expressed as 24 data points, i.e., Ld(1), . . . , Ld(24). The number of187

daily profiles varies for each building due to the different data collection188

periods of buildings.189

We first remove daily profiles that do not have complete 24 data
points. Then, we normalize daily profiles for further analysis using
Z-normalization as [59, 60]

Zd(t) =
Ld(t)− µ

σ
(1)

where µ and σ are the mean and standard deviation of L(t). Z-190

normalization allows us to capture the shape of the profile rather than191
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Figure 3: Overview of data analytics framework
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Algorithm 1: K-Means clustering

Determine the number of clusters (k)
Initialize k number of centroid randomly
repeat

for every data point do
for every centroid do

calculate the distance between the data point and the centroid
assign the point to the cluster with the lowest distance away

end

end
for every cluster do

calculate the cluster mean assign the cluster to the mean
end

until no data point has changed cluster assignment

the magnitude as the resulting mean for all profiles will be close to 0,192

while the standard deviation will be close to 1. We now elaborate how193

we cluster these profiles.194

2. Profile Clustering The objective of clustering is to group the given195

data points, load profiles in our case, into a certain number k of clusters196

that show similarity. We use three clustering algorithms in our study,197

but other unsupervised learning algorithms can be also used.198

The first algorithm that we investigate is K-means clustering (see199

Alg. 1). Due to its simplicity, this algorithm has been widely ap-200

plied in various domains [61], and has been shown to be the most201

popular approach for smart meter and portfolio analysis [62], which202

are potential applications of our study.203

The drawback of K-means is its randomness in the initialization of the204

k initial centroids, which sometimes results in local minimum rather205

than a global one [63]. To mitigate this potential issue, we also apply206

the Bisecting K-means [64] algorithm to our dataset. The main differ-207

ence compared to basic K-means is that Bisecting K-means starts to208

cluster dataset with k = 2 (see Alg. 2), calculates the sum of squared209

error (SSE) of each cluster, divides one of the clusters into two new210

ones, and proceeds iteratively until a number of k clusters have been211

determined.212

Both basic K-means and Bisecting K-means are deterministic in na-213

ture, i.e., they use the mean as centroid of clusters and assign the clus-214
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Algorithm 2: Bisecting K-Means clustering

Determine the number of clusters (k)
Start with basic K-means clustering (k=2)
repeat

for every cluster do
measure the SSE of the clusters
select the cluster with higher SSE

end
for selected cluster do

K-means clustering (k=2)
end

until the number of clusters reached k

Algorithm 3: Gaussian Mixture Model based clustering

Determine the number of clusters (k)
Obtain k centroids using basic K-Means
Initialize weights, means and variances based on the k centroids obtained
repeat

for every data point do
calculate the responsibility of the data point for each mixture
component using the updated weights, means and variances

end
compute the estimates for weights, means and variances that maximize
the expected complete data log likelihood given the calculated
responsibilities

until the expected likelihood converged

ter type based on the euclidean distance. Thus, they lack of an intrinsic215

measure of probability or uncertainty on the cluster assignment [65].216

In this regard, Gaussian mixture model (GMM) can estimate a mix-217

ture of multi-dimensional Gaussian probability distributions of each218

cluster (see Alg. 3). Compared to K-means, GMM is more flexible in219

terms of cluster covariance. GMM is based on a two step expectation-220

maximization approach: 1) Expectation: for each data point, find221

weights encoding the probability of membership in each cluster, and222

2) Maximization: for each cluster, update its location, normalization,223

and shape based on all data points, making use of the weights [65].224

We calculate three metrics to evaluate the clustering performance of
each algorithm. The first one, Cohesion, measures the similarity of
profiles within a cluster by evaluating the sum of squared distances
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from each data point to the respective centroid:

Cohesion =
k∑

i=1

∑
x∈Ci

||x− ci||2 (2)

where k is the number of clusters, Ci is cluster i, x is a point in cluster225

Ci and ci is the centroid of cluster Ci.226

Conversely, Separation measures how well dissimilar profiles are grouped
into separate clusters by evaluating the sum of squared distances from
each centroid to the overall centroid adjusted by the number of data
points in the respective clusters:

Separation =
k∑

i=1

|Ci|||ci − c||2 (3)

where |Ci| is the number of points in each cluster and c is the overall227

centroid of the data.228

Third, we use the Calinski-Harabasz (CH) Score, which offers a trade-
off between separation and cohesion by using both the average between-
and within- cluster sum of squares [66, 67] as

CH Score =

∑k
i=1 |Ci|||ci − c||2/(k − 1)∑k

i=1

∑
x∈Ci

||x− ci||2/(n− k)
(4)

where n is the number of data points.229

We described our selection of clustering algorithms and the evaluation230

metrics of clustering performance. Next, we explain how this clustering231

result is interpreted with respect to fundamental load shapes.232

3. Cluster distribution and fundamental load shapes Each of the found
k clusters represent a distinct energy consumption pattern in our
dataset. If we aggregate these clustered daily profiles at the build-
ing level, then each building has proportions of cluster assignment.
Dominant clusters, i.e, those that occur often can be identified using
the entropy computation as [11]

E(j) = −
k∑

i=1

pj(Ci) log2 pj(Ci) (5)

where pj(Ci) is the proportion of cluster type i in building j. The233

entropy quantifies how distinct the load shape profiles of the building234

12



are. If the building has only one cluster, then E(j) = 0. Larger values235

for E(j) indicate that various consumption patterns are occurring with236

similar distribution, i.e., no dominant profiles are present.237

The existence of dominant clusters, i.e., buildings with low entropy,238

indicates that the building consumed energy in a relatively consistent239

pattern. Reversely, if a building has evenly distributed k clusters, i.e.,240

no dominant cluster, then this building behaved with various energy241

consumption patterns. If the same dominant profile is present in a242

large amount of buildings, it is considered a fundamental load shape.243

Finally, we group the buildings by cluster assignment, i.e., the building
belongs into group Gk if its dominant cluster is Ck:

Gk = {Bldg(j)
∣∣ ∃!k such that pj(Ck) > 0.5}. (6)

If there is no dominant cluster, then these buildings are classified as,

G0 = {Bldg(j)
∣∣ pj(Ck) < 0.5 ∀k} (7)

To summarize, the groups Gk have been derived only via clustering244

and are hence representative of the energy consumption pattern. The245

dominant profiles of each group are considered the fundamental load246

shape profiles of the buildings.247

3.3. Application: Data-driven load profile based benchmarking248

As a case study of possible applications, we apply the derived fundamen-249

tal load profiles to data-driven benchmarking. As stated earlier, the main250

difference to the conventional approach is that the objective of the proposed251

benchmarking is to group a large amount of buildings into the groups of252

buildings with similar load shape profiles.253

Once we group the buildings based on their load shape profiles, we fur-254

ther investigate the meta data distribution of each group. In addition, we255

evaluate the results of the two benchmarking strategies by (1) EUI, which is256

widely used for comparing building performance between buildings and (2)257

energy consumption pattern, which is the main topic of this paper.258

3.4. Computing facility259

Our dataset contains 2,365,563 daily profiles from 3,829 buildings. The260

proposed framework is computationally demanding, especially the cluster-261

ing and performance metric computations. Thus, we employed the Maverick262

high performance computing system from the Texas Advanced Computing263
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Center (TACC) [68]. The computation time was approximately 16 hours to264

perform data preprocessing, three clustering analyses with performance met-265

ric calculations, regrouping of buildings, and the data-driven benchmarking266

study. We used Python for pre- and post-processing. The clustering algo-267

rithms themselves have been implemented using the scikit-learn library [69].268

All our code is organized in Jupyter notebooks and released on Github [70].269

4. Results270

4.1. Data exploration271

Fig. 4 shows the summary of the data by industry type, PSU, and gross272

area. There are 1,910 residential and 1,919 non-residential buildings in our273

dataset. Residential buildings are mainly single family houses, while non-274

residential buildings are from education, government and other industries.275

The major constitution of non-residential buildings are from education in-276

dustry (1,038 buildings). In terms of geographical locations, residential277

buildings are predominately from climate zone 4, 10% being located in cli-278

mate zone 2. Similarly, most of the non-residential buildings are located in279

climate zone 4. Approximately, 20% of buildings are from climate 2 and280

5, respectively, and only a few buildings are located in climate zones 1 and281

3. Regarding building size, most of non-residential buildings are larger than282

residential buildings in our dataset. For residential buildings, the majority of283

the buildings (64%) are between 100 and 200 m2. On the other hand, most284

of non-residential buildings are larger than 3,000 m2, and we also have very285

large facilities (> 10, 000m2), i.e., auditorium, stadium, and gymnasium in286

education industry.287

4.2. Clustering288

Fig. 5 shows the clustering result: Each column represents an algorithm,289

i.e., K-means, Bisecting K-means, and GMM, and each row indicates a dif-290

ferent k = 2...10, resulting in 27 individual sub-figures. In each sub-figure,291

the colored lines represent the cluster centroid, i.e., the average of the daily292

profiles in each cluster. The line thickness is scaled according to the number293

of profiles for the respective cluster, i.e., a thicker line indicates that that294

cluster contains more daily profiles.295

We can evaluate the clustering results qualitatively first. As an example,296

the first sub-figure is the result of K-means clustering for k = 2: all the daily297

profiles are clustered into the two representative load profiles. The blue load298

profile has the peak around noon, while the orange one consumes less energy299

around noon but has two shallow peak points during morning and evening300

14



Figure 4: Summary of our dataset organized by industry type, climate zone and gross
area

time. Also, there are more load profiles clustered to the orange load profile301

compared to the blue one.302

Further, in Fig. 5, we also observe that both K-means and Bisecting K-303

means result in rather similar load profiles. Increasing the cluster numbers304

until k=4, both methods subdivide the orange cluster into morning peak305

and evening peak precisely (orange, green, red). By increasing from k=5 to306

k=10, K-means details more evening peak clusters, while Bisecting K-means307

generates various morning peak clusters. This is because Bisecting K-means308

selects the cluster of higher SSE and again clusters (k=2) on the data points309

of said cluster. For example, the purple profile in Bisecting K-means (k=5)310

emerged due to this reason and this recursive approach generates different311

outcomes afterward. On the other hand, the GMM based clusters differ.312

This method clearly clusters noon peak profiles after k=5 case, but most of313

profiles are compounded on each other, which indicates that GMM may not314

be a suitable clustering method to find distinct profiles.315

The clustering performance metrics, i.e, cohesion, separation and CH316

score are shown in Fig. 6 as a function of k. In each case, K-means has317

the lowest cohesion, and both the largest separation and largest CH score,318

indicating that K-means clustering provides the best results in Fig. 5. In319

addition, increasing the number of clusters generally leads to lower cohesion320

and larger separation. Both K-means and Bisecting K-means show decreas-321

ing CH score with increasing k, while GMM shows low CH score with little322

variation. Although there is no optimal procedure to find the optimal k323
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Figure 5: Clustering result for both residential and non-residential buildings (K-means
clustering result with k=3 is highlighted and used for further analysis)
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Figure 6: Clustering performance metric

for clustering analysis in general, based on our metrics we conclude that in324

Fig. 6, the best balance between cohesion and separation is achieved with325

k = 3, which is also supported by the highest CH score.326

4.3. Dominant clusters and fundamental load shape profiles327

Fig. 7 visualizes the dominant clusters for our dataset for k=3. Each328

horizontal line represents one building, shown with cluster assignment and329

color-coded meta data information for reference. The cluster assignment330

column shows the proportions of the three clusters: The buildings in G1331

exhibit a dominant cluster whose profile peaks at noon. G2 and G3 exhibit332

predominantly morning and evening profiles, respectively. Finally, buildings333

in G0 have proportions of the three clusters each less than 50%, i.e., no334

dominant cluster. The last five columns visualize meta data information,335

aggregated in Fig. 8.336

Using the proportions of clustering assignments, we calculate the entropy337

for each building. This entropy value quantifies the consistency of the load338

shape profiles of a building. Fig. 8a) visualizes the distributions of entropy339

of the buildings for each group. G0 shows the highest entropy compared340

to the other groups. This indicates that it is comparatively more difficult341

to identify a fundamental load profile of the buildings in G0. On the other342

hand, groups G1—G3 have lower average entropies, with G2 having the343

lowest. Since this indicates that the buildings have consistent energy use344

patterns, we conclude that the identified dominant load shape profiles for345

k=3 are indeed fundamental, in that they are characteristic of the energy346
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Figure 7: Grouping result by dominant clusters (the horizontal lengths of skyblue, blue,
and navy represent the proportions of noon, morning, and evening peak load profiles of
each building; legends for meta data are in Fig. 8)
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Figure 8: Aggregated meta data information on each group
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Figure 9: Three fundamental load shapes discovered from 2,365,563 daily profiles

use of buildings. In addition, G0 contains only 194 (≈ 6%) buildings in347

total and mixed with residential and non-residential buildings with various348

PSUs. This relatively small number of buildings in G0 indicates that most349

of buildings indeed exhibit at least one fundamental load shape profile. We350

show these profiles again in Fig. 9 for reference.351

G1 and G2 have 1,005 and 478 buildings, respectively, and 90% of these352

buildings are non-residential buildings (Fig. 8b)). The distributions of PSU353

and gross area on group 1 & 2 were similar which suggests that building354

program and building size are not the primary factors to define the dom-355

inant load profile (Fig. 8c) & Fig. 8e)). Although our data collection has356

slightly skewed climate zones, G2 has buildings from climate zone 2, 4,357

and 5 evenly, while G2 mainly contains the buildings from climate zone 4358

(Fig. 8d)). Regarding EUI, Fig. 8f) shows similar EUI distributions for359

both groups, confirming that EUI based benchmarking is an inappropriate360

approach for differentiating different energy consumption patterns of build-361

ings.362

About one half of the buildings are categorized as G3 (1,645 buildings),363

and they are primarily residential buildings (single family houses) with a364

few dormitory buildings (Fig. 8b) & c)). This indicates that the majority of365

residential buildings are characterized as an evening peak energy load profile,366

which is a typical daily occupant behavior pattern in residential buildings.367

In terms of climate condition, climate zone 4 takes primary portion on this368

group due to the fact that majority of residential buildings are located in369

climate zone 4.370

In conclusion, our results show that about 94% of the buildings have371

been assigned a dominant cluster, i.e., a cluster that is representative for372

the daily energy consumption pattern of the building for more than 50% of373
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the days. The centroid of the dominant cluster, therefore, can be interpreted374

as a fundamental load shape profile (Fig. 9). Given that our clustering result375

suggested an optimal value for the number of clusters as k=3, it follows that376

there exist three fundamental load shape profiles that appropriately capture377

the temporal energy use of buildings, regardless of other artificial, man-made378

labels.379

4.4. Load profile based versus PSU based benchmarking380

We compare our data-driven benchmarking result with the conventional381

approach, i.e., PSU based grouping. We adopt two different perspectives382

in terms of building energy, i.e., energy consumption pattern and EUI, to383

analyze the benchmarking results.384

First, Fig. 10 visualizes the distribution of the resulting normalized load385

profiles for each benchmarking approaches. The top nine sub-figures show386

the distributions of load profiles of common PSUs in our dataset, and bottom387

four sub-figures are our data-driven benchmarking results for the same build-388

ings. In general, the bottom sub-figures have clear load shape profiles with389

smaller interquartile ranges (IQR) compared to the profiles of PSU based390

grouping results. However, three PSUs (single family house, dormitory, and391

library) show relatively small IQR, which suggests that these PSUs have392

their unique load shape profile. Notably, the shape of single family house is393

similar to the shape of G3, because the main constitution of G3 is the single394

family house type (Fig. 4b)). Also, the buildings in G1 is mainly collective of395

office, college laboratory, community center, library, and primary/secondary396

classrooms PSU types. Fig. 8c) details distribution of PSUs. The buildings397

of G0 show fairly constant energy consumption pattern because they have398

evenly distributed fundamental load profiles, which average out each other399

throughout the day.400

To evaluate how each benchmarking strategy grouped the buildings in401

terms of load profile, we show the clustering performance metrics in Tab. 2.402

The result indicates smaller cohesion, larger separation and larger CH score403

for data-driven benchmarking, meaning that the fundamental load shape404

profile approach is superior in both grouping and separating buildings with405

similar and dissimilar load profiles, respectively. This confirms that the406

proposed benchmarking method is particularly suitable to discover the peers407

with similar energy consumption pattern. In addition, this reduction from408

nine PSUs to four groups (G0—G3) suggests that we would only need four409

groups to investigate building performance comprehensively.410

Second, we also investigated the resulting EUI distributions of the two411

benchmarking methods. Fig. 11 shows that while both benchmarking meth-412
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Figure 10: Profile distributions of PSU based (top) and data-driven benchmarking (bot-
tom) (basic and dashed lines indicate mean and quartiles (25% & 75%) of normalized load
profiles, respectively; All sub-figures are at the same scale)
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Benchmark type Cohesion Separation CH score

Primary space use 4.73× 107 3.85× 106 1.20× 104

Fundamental load shape 4.28× 107 8.30× 106 1.52× 105

Table 2: The performance metrics indicate that clustering based on fundamental profiles
results in better groups (low cohesion, large separation and large CH score)

Figure 11: EUI distributions of PSU based (left) and data-driven benchmarking (right)

ods result in outliers, our data-driven benchmarking groups buildings with413

similar EUI values, i.e., smaller variations in EUI in each group compared414

to PSU benchmarking. This suggests that we can potentially utilize the415

proposed method for benchmarking not only load shape profiles but also416

the EUI of buildings.417

5. Discussion418

Several areas of building performance research in the last three decades419

have relied upon the approximation of typical daily, weekly and seasonal420

patterns of energy use. The rapid increase in the availability and quality of421

raw measured data from the built environment enables the wider use of such422

patterns for various performance applications. In this paper, we questioned423

whether the extraction of daily performance patterns can impact the way424

buildings are labeled for the purpose of benchmarking. The result indicates425

that 94% of buildings can be grouped by three dominant load profiles. In426

addition, since buildings share these dominant load profiles, we consider427
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them fundamental, and conclude that three fundamental profiles can be428

used as load shape characteristics of buildings.429

Our proposed method clearly differentiates between residential and non-430

residential buildings by their energy consumption patterns. Most of residen-431

tial buildings are grouped into G3, which is an evening peak profile, whereas432

non-residential buildings are divided into the two groups, G1 and G2, with433

noon and morning peak respectively. This is because the energy consump-434

tion of residential buildings is largely determined by occupant behavior,435

i.e., the occupant’s building system and appliance usage [71]. Although436

occupant behavior is also important factor to understand energy consump-437

tion in non-residential buildings, most of education or governmental facil-438

ities have predefined schedules to operate buildings. One may, therefore,439

rightfully question whether it would make sense to separate residential from440

non-residential buildings to perform our analysis. We opted to keep them441

together to reinforce the fundamental nature of our results. However, we442

have performed the same clustering analysis for the two separated datasets443

and show it in the Appendix. In both cases, k=2 emerges as a good value444

for the number of clusters, suggesting that two load shape profile exist in445

each case, which is not so different from k=3 in the combined case. Fur-446

ther research is necessary to investigate the differences and opportunities in447

separating the two major use types.448

Although our dataset is one of the most diverse that has been analyzed449

so far in literature, it may still be biased. For example, most of the resi-450

dential buildings are from the CER Smart Meter Data [50], from the same451

location (Cork/Ireland), in one particular climate zone, and might result in452

similar occupant behavior. With other residential datasets, we can further453

investigate occupant behavior patterns. In addition, non-residential build-454

ings are also mainly from educational buildings, i.e., university campuses,455

which might have similar predefined schedules by the facility management.456

Since the datasets are public, and our proposed clustering framework is open457

source [70], we invite researchers to add to our dataset and reanalyze the458

clustering results to improve the robustness of our approach.459

Various parameters can affect the results of the clustering and subse-460

quent benchmarking analysis. First, the temporal resolution of the smart461

meter data is important. In [72], authors studied the impact of using dif-462

ferent temporal resolution meter data (2 minutes to 2 hours) and concluded463

that 4-60 minutes resolution data is ideal for robust load profiling. We used464

60 minute interval in our analysis. In addition, the day type of each daily465

profile could be considered separately as it is likely that, for example, load466

profiles of weekdays and weekends are different. Lastly, we used a domi-467
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nance threshold of 50%. By increasing this number, each group would have468

a smaller entropy value. However, there would be more buildings assigned469

to G0. The threshold value can be varied based on the purpose of bench-470

marking.471

Conventional building benchmarking systems seek to establish how much472

better or worse a building performs as compared to its peers. A prominent473

example is the EnergyStar building rating system in the United States [37].474

EnergyStar utilizes data collected from the Commercial Building Energy475

Consumption Survey (CBECS) to create a distribution of performance for476

typical building typologies. A building is benchmarked by comparing annual477

consumption normalized by area and schedule. These self-reported sched-478

ules are often intended or best guess on the part of the operations staff. The479

opportunity arises for the use of clustered daily profiles to automate the pro-480

cess of establish the use intensity of a building beyond self-reported sched-481

ules.Future benchmarking systems will likely require submission of hourly482

or sub-hourly performance data that can be used to automatically establish483

the use intensity of a building.484

5.1. Other Potential Applications485

In addition to the application to benchmarking, the clustering of be-486

havior from collected empirical data will be useful for building simulation487

input analysis, portfolio management, demand response and renewable en-488

ergy planning and allocation.489

5.1.1. Simulation Input490

In the same way as benchmarking, daily use patterns are used in the491

predictive simulation of buildings using tools such as EnergyPlus. These492

day-type patterns are utilized to establish the status quo of full or partial493

operation of lighting, heating, ventilation, and air-conditioning systems and494

to approximate the flow of occupants in and out of the various parts of495

the building. For example, day-typing is a procedure established by the496

ASHRAE Research Project 1093 in the late 1990’s to extract standardized497

load schedules in the form of diversity factors for use in building performance498

simulation [73]. This research has been used extensively since its release as499

it creates a set of defaults that building professionals often use in the first500

passes of the simulation process. Novice simulation users often use these501

defaults without even understanding their impact. These diversity schedules502

have more influence on typical simulation results than the data set used to503

create them can justify. Only 46 building were used to develop the various504

non-residential diversity factor schedule from this project. The results of505
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this paper illustrate the creation of diversity factors from a much larger506

set of buildings and this could form the foundation for simulation default507

schedules.508

5.1.2. Portfolio Management509

Facilities management of a collection of buildings requires the alignment510

of operations policies across potentially hundreds of buildings. These poli-511

cies dictate how buildings should respond to use requirements from the512

functional needs of the building. University campuses are a good exam-513

ple of an organization that often own and operate numerous buildings and514

seek to manage energy consumption and keep occupants satisfied. Standard515

operating schedules are often used to create consistency in these types of516

organizations, however these policies are not often verified in a data-driven517

way. Automated fault detection and diagnostics systems are often used to518

detect these schedule mismatches, however these systems have limited mar-519

ket penetration and are overly sophisticated. The ability to compare the520

extracted daily and weekly patterns of buildings in a portfolio empowers521

the automated comparison to standard operating schedules.522

Fig. 12 shows such a data-driven portfolio analysis for a random selec-523

tion of 100 buildings in our dataset grouped according to G0—G3, each dot524

representing a building colored according to its PSU. From such a graph,525

building managers can understand their building performances comprehen-526

sively, i.e., the fundamental load shape profile and the EUI distribution.527

528

5.1.3. Renewable Energy Integration and Demand Response529

Demand response and renewable energy integration are similar chal-530

lenges in that they rely on the characterization of patterns of use in the531

time domain. In demand response applications, building owners need to532

understand the peak regions of energy use across numerous buildings and533

develop strategies to offset those collective maximums. The ability to char-534

acterize the load profiles of buildings in an automated and way facilitates535

this analysis.536

6. Conclusion537

In this paper, we investigated the existence of fundamental building load538

shape profiles using unsupervised machine learning methods, and applied539

them to a data-driven benchmarking study. With K-means clustering, three540
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Figure 12: Application example with randomly sampled 100 buildings

fundamental profiles, i.e., morning, noon, and evening peak energy consump-541

tion pattern, are discovered. Calculating the distribution of each clustering542

assignment, we grouped the buildings with respect to their dominant profiles.543

We found that 94% of the buildings are assigned to one of the three funda-544

mental profile shapes. This novel grouping result is further compared with545

a conventional building usage type based benchmarking and has evidenced546

its potential applications for shaping a sustainable built environment.547

Appendix548

The appendix shows the clustering results separated for residential (Fig. 13)549

and non-residential (Fig. 14) buildings, as well as the cluster quality metrics550

(Fig. 15). These results show that K-means clustering method with k=2551

provides the best grouping in each case.552
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Figure 13: Clustering result for residential buildings
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Figure 14: Clustering result for non-residential buildings
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Figure 15: Clustering performance metrics from residential buildings (top) and non-
residential buildings (bottom)
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