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Abstract

In late 2019, ASHRAE hosted the Great Energy Predictor III (GEPIII) machine learning competition on the Kaggle platform. This
launch marked the third energy prediction competition from ASHRAE and the first since the mid-1990s. In this updated version,
the competitors were provided with over 20 million points of training data from 2,380 energy meters collected for 1,448 buildings
from 16 sources. This competition’s overall objective was to find the most accurate modeling solutions for the prediction of over
41 million private and public test data points. The competition had 4,370 participants, split across 3,614 teams from 94 countries
who submitted 39,403 predictions. In addition to the top five winning workflows, the competitors publicly shared 415 reproducible
online machine learning workflow examples (notebooks), including over 40 additional, full solutions. This paper gives a high-level
overview of the competition preparation and dataset, competitors and their discussions, machine learning workflows and models
generated, winners and their submissions, discussion of lessons learned, and competition outputs and next steps. The most popular
and accurate machine learning workflows used large ensembles of mostly gradient boosting tree models, such as LightGBM. Similar
to the first predictor competition, preprocessing of the data sets emerged as a key differentiator.

Keywords: Building energy model benchmarking, Machine learning benchmarking, Data-driven energy modeling, Gradient
Boosting Trees, Measurement and verification

1. Introduction

Reducing the overall energy consumption and associated
greenhouse gas emissions in the building sector is essential for
meeting our future sustainability goals. One promising technol-
ogy adoption is an energy metering infrastructure, which has
been widely deployed around the world. The new paradigm
shift of building energy data collection from interval meters,
or data loggers, has generated unprecedented amounts of data.
Analysis with a data-driven approach has provided informative
insights into the built environment [1, 2]. Among various ap-
plications, building energy use prediction and forecasting using
machine learning models has been a widely explored topic of
research since the early 1990s. Research publications in ma-
chine learning applied to building performance prediction have
steadily been increasing over the last thirty years. One of the

first review papers by Zhao and Magoules explained the predic-
tion methods of building energy consumption which included
engineering models, statistical models, and machine learning
models. One of the conclusions of this early review was that
artificial neural networks (ANN) and support vector machines
(SVM) could give a highly accurate prediction, without requir-
ing descriptive building information, as long as they have suffi-
cient historical data [3]. More recently, Wang and Srinivasan re-
viewed artificial intelligence-based building energy use predic-
tion studies. They specifically compared multiple linear regres-
sion, ANN, SVM, and ensemble methods. Recent work has fo-
cused on using ensembles of models, which are large networks
of machine learning techniques that reduce errors through di-
versity. Although ensemble models are computationally tricky,
they usually outperformed other algorithms [4]. Amasyali and
El-Gohary outlined several papers describing methods to pre-
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dict energy consumption in buildings using features such as
weather, occupancy, and schedule [5]. In contrast to supervised
learning, Bourdeau et al. identified that researchers also utilized
unsupervised, reinforcement, and transfer learning approaches
to predict future building energy consumption [6].

Despite the overwhelming amount of research in data-driven
energy prediction, it is difficult to compare different prediction
methods against each other [7]. Each researcher who imple-
ments their technique on a small dataset for a single or small
group of buildings is essentially creating a custom-built or be-
spoke modeling process that has been optimized for the charac-
teristics of that particular context. To address this issue, there
have been two critical studies in the last decade using 400 build-
ings [8] and 537 buildings [9] building upon a previously gen-
erated methodology [10] to compare the performance of sev-
eral prominent energy prediction techniques for measurement
and verification (M&V). While making progress in the field,
these studies restricted models tested to only a set of techniques
chosen by the authors that are already used on building energy
data. The Energy Valuation Organization (EVO) now hosts a
platform based on these studies that allows users to test their
approaches on 367 buildings1. Such work has provided ob-
jective evidence of the effectiveness of various techniques and
has provided the foundation for further work in automating the
M&V process [11]. These studies and the effort associated with
them are important, but the number of techniques tested is still
relatively low and the data used in these studies are not entirely
available in an open access way to the broader research commu-
nity. These aspects restrict the ability to compare the numerous
new machine learning models and techniques rapidly being de-
veloped by the modern data science movement.

The built environment is not the only domain that has the
challenge of generalizability of models, and many of them
have created data sets and competitions to respond. For ex-
ample, the research field of computer vision has been devel-
oped extensively by strong open datasets, e.g., CIFAR-10 [12],
Cityscapes [13], Fashion-MNIST [14], and ImageNet [15].
Lessons learned from the computer vision research domain in-
clude the fact that generalizability and scalability of solutions
can be investigated through large machine learning competi-
tions.

This paper describes the development and results of the
ASHRAE Great Energy Predictor III (GEPIII) competition held
in late 2019. Since the first launch in 1993, the ASHRAE
Great Energy Predictor competition series has been the foun-
dation for crowdsourced machine learning benchmarking for
time series data related to the building and construction indus-
try. This paper will show that this latest competition effort has
crowdsourced a significant amount of machine learning mod-
eling knowledge for determining the best-performing methods
for the hourly energy prediction of commercial buildings and
tutorials for building scientists who would like to learn these
techniques.

1https://mvportal.evo-world.org/

1.1. Machine learning competitions as a means of crowdsourc-
ing and benchmarking prediction models

Machine learning competitions generally consist of provid-
ing the same dataset, prediction objectives, constraints, and
performance metrics to a pool of contestants, intending to de-
termine who can develop the best workflow/model/algorithm
to achieve the most accurate prediction results. Hundreds of
machine learning competitions have been held since the early
2000s when the internet made it possible to crowdsource the
machine learning process and provide instantaneous results to
participants. Several platforms exist, with the most popular
hosting several competitions with substantial monetary incen-
tives such as the Zillow Home Value Prediction competition
that had total prizes of $1.2 million USD2. Over 25 years have
passed since the Great Energy Predictor Competition II (also
known as the Predictor Shootout II); however, the models and
lessons learned from that competition are still being used in the
research community. A significant motivation for this compe-
tition was to adopt the latest developments in machine learning
since the last competition into the community of building re-
searchers.

The Great Energy Predictor Shootout I contest, held in 1993,
was hosted by Jeff Haberl and Jan Kreider, with support from
ASHRAE TC 4.7 and TC 1.5 [16]. For this contest, more
than 150 participants were provided a four-month-long train-
ing dataset containing hourly records of chilled water, hot wa-
ter, and whole building electricity usage for a single institu-
tional building. Detailed weather data, including solar radiation
measurements, were also provided. Contestants were asked to
construct different models to predict the energy use for the two
months that followed the data set and a time-independent model
predicting solar flux. Submissions were sent to the contest or-
ganizers via shipping and mailing services. These data were
compared to the actual measured energy usage and solar mea-
surements and scored using the Coefficient of Variation (CV)
metric. While monetary prizes were not awarded, six winners
were recognized in a variety of publications and presentations.
The top winners used Bayesian nonlinear modeling [17], arti-
ficial neural networks [18, 19], generalized nonlinear regres-
sion with an ensemble of neural networks [20], and piecewise
linear regression [21]. After the competition, the specifics of
the dataset were revealed to the contestants, and papers were
written to detail their modeling efforts. In addition, ASHRAE
published a special issue that contained the papers and data sets
from the competition [22].

A second Great Energy Predictor Shootout II contest was
conducted in 1994 and hosted by Jeff Haberl and Sabaratnan
Thamilseran [23]. This six-month competition leveraged an
anonymous FTP (file transfer protocol) site, where 50 down-
loads of the instructions and data were recorded. Contes-
tants were provided with detailed sub-metered datasets col-
lected from two buildings that had recently received energy
savings retrofits. For each building, the competition utilized
sets of measured hourly pre- and post-retrofit data. Contes-
tants were asked to construct models to predict data that had

2https://www.kaggle.com/c/zillow-prize-1
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been carefully and purposefully removed from both the pre- and
post-retrofit periods. A single set of predictions were submit-
ted to the organizers, who compared them to the hold-out data
and calculated the accuracy metrics of the hourly coefficient of
variation (CV-RMSE) and mean bias error (MBE). The Predic-
tor Shootout II competition had 47 submissions, with only four
submissions meeting all the submission requirements. While
monetary prizes were not awarded, the four compliant submis-
sions were recognized in a variety of publications and presen-
tations [24, 25, 26, 27].

2. Pre-Competition process

The planning of the third competition kicked off in January
2018 at the ASHRAE Winter Meeting in Chicago, IL. Fol-
lowing this, the ASHRAE Technical Committee (TC) 4.7 dis-
cussed creating a machine learning competition. The logistics
and technical leaders of the competition began a discussion in
February 2018, where contest scope, goals, timeline, and re-
sources needed were planned. The plan was initially presented
to the ASHRAE Technical Activities Committee (TAC) in June
2018 at the ASHRAE summer meeting in Houston, TX. While
the TAC indicated general support and encouragement, com-
mitment for the required monetary resources was not ensured.
Nevertheless, the organizing committee continued expanding
efforts - recruiting potential data donors and refining expec-
tations. The organizing committee identified several possible
hosting platforms for the data competition. The team selected
Kaggle3, having over ten years of competition hosting experi-
ence and more than one million registered users, as the pre-
ferred host for the data competition. Initial contacts with Kag-
gle were made in September of 2018. A more detailed proposal
was presented to the TAC in January 2019 at the ASHRAE At-
lanta Winter meeting. The TAC, along with ASHRAE Tech
Council, recommended that the detailed proposal be presented
to the ASHRAE Research Activities Committee (RAC) - to be
funded as an Unsolicited Research Proposal. At the June 2019
ASHRAE Summer meeting, the RAC voted to approve the data
competition and fund the monetary awards, allowing the data
competition to move forward. Soon after, a complete competi-
tion dataset was shared with Kaggle, who maintained strict data
vetting and acceptance processes. Throughout July and August,
the organization committee worked closely with Kaggle to fi-
nalize the dataset and present competition rules to ASHRAE
to approve. ASHRAE formalized their support by signing a
contract with Kaggle in September of 2019. Kaggle formally
launched the ASHRAE sponsored data competition on October
5, 2019, with a scheduled ending of December 19, 2019.

2.1. Dataset development
The creation of the competition dataset started in March 2018

through initial discussions with the various stakeholders by the
technical lead. This effort continued through 2018 up to May of
2019. This data collection process’s primary goal was to create

3https://www.kaggle.com/

the largest and most diverse dataset possible to challenge the
contestants to create the most generalizable models for the ben-
efit of the energy prediction research community. Requests for
data donors were made at various ASHRAE conferences and
through the technical team members. The datasets were col-
lected from publicly available sources that are freely available
online and from closed systems that required extraction by the
facility management teams from many of the data donor loca-
tions.

Throughout the data collection process, the dataset grew to
a total of 61,910,200 energy measurements taken from 16 sites
worldwide. These data are hourly measurements taken from en-
ergy metering systems at locations that had data from January
1, 2016, to December 31, 2018. Figure 1 illustrates a break-
down of crucial metadata features of the data set. A majority
of the data sites were universities; therefore, the most common
building type is education. The primary use type of buildings
corresponds to the categories found in the EnergyStar build-
ing benchmarking system. Around 73% of the data were from
buildings on university campus sites (1058 buildings) and the
remaining 27% of the sites were from city-wide municipal and
healthcare building repositories (390 buildings). Some of the
universities from which data were collected include the Uni-
versity of Central Florida, University College London, Arizona
State University, University of California at Berkeley, Univer-
sity of Texas at Austin, Carleton University, University College
Dublin, Princeton University and Cornell University. The mu-
nicipal building sites included Washington DC, Cardiff, UK,
and Ottawa, Canada. These sites as well as others that remain
anonymous are found in a complimentary publication [28].

Coincident weather data was provided to the contestants for
each of these sites. Minimal data cleaning and processing were
conducted on the data for the competition as the technical com-
mittee wanted conditions for the competitors to be as close to
a real-world scenario in which data cleaning and preprocess-
ing is an integral component of the winning contestants’ solu-
tions. Details of the cleaning and preparation of the data set,
the sources from which the data was collected, and other in-
formation on data use can also be found in the publication that
outlines the open release of much of the competition data set
[28].

2.2. Competition objective
The context presented to the contestants focused on using

regression-based machine learning to predict the energy sav-
ings of a retrofit in the measurement and verification (M&V)
process. Assessing the value of energy efficiency improve-
ments can be challenging as there is no economically viable
way to truly know how much energy a building would have used
without the upgrades. Therefore, the best solution is to build
counterfactual models that predict the building’s pre-retrofit en-
ergy use rate in the post-retrofit period. Once a building is
overhauled, the new (lower) energy consumption is compared
against modeled values for the original building to calculate the
retrofit’s savings. More accurate models could support better
market incentives and enable lower-cost financing. This com-
petition challenged the contestants to build these counterfactual

3
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Figure 1: Overview of the data set curated for the GEPIII competition (clockwise from upper left): type of energy being measured (upper left); the primary use type
of the buildings in the data set (upper right); the time zone in which the buildings are located (middle right); the year the buildings were constructed (lower right);
the gross floor area in sq. ft. of the buildings (lower left); and a breakdown of the amount of data collected from the 16 sites (middle left).

models across four energy types based on historical energy us-
age rates and observed coincident weather. Prediction of hourly
data in this context is not always standard; however, this aspect
was seen as a means of increasing the challenge for the partic-
ipants. To create the machine learning challenge, each of the
three years of data was divided into its own data set, as seen in
Figure 2.

2.2.1. Training data set
The first year (2016) of hourly energy meter data was pro-

vided to the machine learning contestants as the training data
to be used for model training alongside various hourly weather
data streams. The contestants were tasked with preprocessing
these data, creating multiple input features, and training ma-

chine learning modeling frameworks to predict the second and
third years of data.

2.2.2. Public test/validation data set - the public leaderboard
The second-year (2017) of meter data was not provided to the

contestants. It was assigned as the public test/validation data set
for an incremental indication of progress in the machine learn-
ing process during the competition through the public leader-
board. The contestants were not notified of where the exact di-
visions were between the public test/validation and private test
data sets, but they were aware that there would be this division
and that there were separate scoring and leaderboards for each.
This data set included data from all the buildings and meters,
including those from public data sources. The contestants were
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2016 2017 2018

Training Public Test/Validation - Public Leaderboard Private Test - Private Leaderboard

Figure 2: Split between training, public test/validation and private test data

not notified that a portion of the data sets was public, but the
competition planning team understood that some of these data
would be discovered and as a result were shared openly within
the contestant pool in the discussion forum. Public data sources
were considered external data and were allowed to be used in
the development of the solution, as long as these sources were
disclosed to the other contestants. We call this data set public
test/validation as it was assumed that the public data could be
used as a validation set to help refine strategies.

2.2.3. Private test data set - the private leaderboard
The third-year (2018) was also withheld from the contestants

and was assigned to the final private test data set that was used
to calculate the score that was used to determine the winning
individuals and teams. This final score was withheld from the
contestants during the competition and was released as the pri-
vate leaderboard after the competition was concluded. The cal-
culation of this score did not include data from the public data
sources; therefore, the contestants’ discovery and use of these
data had no impact on this score beyond providing more train-
ing and validation data. All public data was eventually shared
on the discussion forum and all contestants had access. An
overview of which sites were publicly available can be found
in the associated open data publication mentioned earlier [28].
During the competition, one of the sites that were previously
thought to be non-public (by the operations team of the data
donor) was found to have an API that the contestants found.
Therefore, this data set was removed from the private test data
set to prevent a leakage impact on the final private test (private
leaderboard) score.

3. Competition procedures and rules

To participate, contestants were first asked to create an ac-
count or login to the competition platform, find the hosted page,
and select that they would like to join the competition. They
were then asked whether they accepted the conditions of the
competition and upon agreement were provided access to the
training data set, a metadata file about the buildings and me-
ters, and the associated weather data for the whole three year
period. Figure 3 outlines the process that each participant went
through to collect the training data, make and submit their pre-
dictions, and then view an automatically created score of their
prediction on the public leaderboard.

3.1. Rules overview
The planning and technical committee of the competition

worked closely with the competition host platform to develop
rules and guidelines that would maximize the benefit of the re-
sults of the competition by providing a level playing field for

the competitors. The following list is a highlight of the relevant
rules of the competition:

• Participants were not allowed to compete from multiple
accounts.

• Participants were allowed to compete individually, or mul-
tiple individuals were allowed to collaborate as a team of
up to five people.

• The individuals and teams were allowed a maximum of 2
entries per day and were allowed to select two final sub-
missions for judging at the end of the competition.

• Participants were allowed to use data other than the com-
petition data to develop and test their models and submis-
sions. However, they were required to ensure the external
data is available for use by all participants of the competi-
tion for purposes of the competition at no cost to the other
participants and post such access to the external data for
the participants to the official competition forum before
the entry deadline.

• The use of automated machine learning tools in the cre-
ation of submissions was permitted, but teams that used
them were not eligible to win prizes.

• Privately sharing code or data outside of teams was not
permitted. However, it was okay to share code if made
available to all participants on the forums.

3.2. Evaluation metric

Whenever a contestant submitted a prediction, it was scored
using the Root Mean Squared Logarithmic Error (RMSLE).
This metric was selected because it is a common and straight-
forward adaptation of the Root Mean Square Error (RMSE) that
reduces the risk that meters with much larger consumption val-
ues would unfairly influence the score significantly more than
lower consuming meters. Since this competition was hosted as
a non-profit competition, it removed the technical team’s ability
to create a custom scoring metric.

The RMSLE is calculated with Equation 1:

ε =

√√
1
n

n∑
i=1

(
log

(
pi + 1

)
− log (ai + 1)

)2
(1)

Where:

• ε is the RMSLE value (score),

• n is the total number of observations in the (public/private)
dataset,
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Figure 3: Workflow for the competitors to make a single submission.

• pi is the prediction of the target,

• ai is the actual target for i, and

• log(x) is the natural logarithm of x.

3.3. Prizes and winners’ obligations

Upon launch of the competition, the contestants were made
aware of the financial rewards of winning the competition. The
monetary prizes were supported by ASHRAE and included the
following breakdown in US dollars:

• 1st place - $10,000

• 2nd place - $7,000

• 3rd place - $5,000

• 4th place - $2,000

• 5th place - $1,000

To claim the prize money, the participants were asked to ac-
cept the following obligations when they registered for the com-
petition:

• The winners were obligated to deliver to ASHRAE the fi-
nal model’s software code as used to generate the winning
submission and associated documentation. The delivered
software code was required to fulfill certain documentation
guidelines and be capable of generating the winning sub-
mission. It must also contain a description of the resources
required to build and run the executable code successfully.

• Winners were required to grant ASHRAE an Open-Source
license to the winning submission and represent that they
had the unrestricted right to grant that license.

In addition to the prize money, winners were encouraged
to attend ASHRAE conferences and participate in workshops,
events, etc. In addition to the winner obligations, the winning
competitors were asked to create a short video (3-7 minutes)
summarizing their solution.

3.4. Data files
When the competitors successfully enrolled in the competi-

tion they were given access to several raw data files that con-
tained the training dataset as well as several types of metadata
that describe each building, and coincident weather data from
the individual sites. Table 1 outlines the files and associated
data columns that were provided to the contestants:

3.5. Timeline
The competition had the following important dates (all times

are 11:59 PM UTC):

• Start date when the contestants were first granted access
to register, download the data, submit solutions, and form
teams: October 15, 2019

• Entry deadline for registering for the competition: Decem-
ber 12, 2019

• Merger deadline when contestants were last able to form a
team: December 12, 2019

• End date and final submission deadline: December 19,
2019

4. Overview of the competitors

The competition was launched online on October 15, 2019 on
the Kaggle website4. During the competition, a total of 4,370

4https://www.kaggle.com/c/ashrae-energy-prediction
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Table 1: Overview of the files provided to the contestants.

File Name and Description File Variables and Short Descriptions
train.csv - This file includes one year of
hourly time-series (8760 samples per meter) for
each meter. The date range for this training set is
Jan 1 - Dec 31, 2016. These data are used to train
the prediction models.

building id - Foreign key for the building metadata.
meter - The meter id code. Read as 0: electricity, 1: chilledwater, 2:
steam, 3: hotwater. Not every building has all meter types.
timestamp - When the measurement was taken.
meter reading - The target variable. Energy consumption in kWh (or
equivalent). Note that this is real data with measurement error, which
we expect will impose a baseline level of modeling error.

building meta.csv - This file includes the
characteristic data from each building in the
competition

site id - Foreign key to match with weather.csv.
building id - Foreign key for training.csv.
primary use - Indicator of the primary category of activities for the
building based on EnergyStar property type definitions.
square feet - Gross floor area of the building.
year built - Year building was opened.
floor count - Number of floors of the building.

weather [train/test].csv - Weather data
from a meteorological station as close as possible
to the site. The data is for all sites and spans from
Jan. 1, 2016 to Dec. 31, 2018.

site id - Foreign key to match with the meta.csv file.
air temperature - Degrees Celsius
cloud coverage - Portion of the sky covered in clouds, in oktas
dew temperature - Degrees Celsius
precip depth 1 hr - Precipitation in millimeters
sea level pressure - Millibar/hectopascals
wind direction - Compass direction (0-360)
wind speed - Meters per second

test.csv - The submission files use row
numbers for ID codes in order to save space on
the file uploads. test.csv has no feature data; it
exists so you can get your predictions into the
correct order. The test data submissions span
from Jan. 1, 2017 to Dec. 31, 2018.

row id - Row id for the submission file
building id - Building id code
cloud coverage - Portion of the sky covered in clouds, in oktas
dew temperature - Degrees Celsius
meter - The meter id code
timestamp - Timestamps for the test data period

participants took part, comprising a total of 3,614 teams. Of
these participants, a total of 2,522 (or 58.1%) indicated their
country of origin. Overall, there were a total of 80 countries
represented among these participants. Figure 4 shows a map
of the countries of origin of the 2,522 participants across the
80 countries. The figure visualizes the number of participants
from those countries that were represented by more than 1% of
participants, where the Other Countries box is the summation
of all countries with less than 1% of participants.

Kaggle has five contestant classification tiers that can be
achieved: Novice, Contributor, Expert, Master, and Grand-
master. Users of the platform start as a Novice and can level-
up through various thresholds of activity such as competition
standings, votes on their analysis and discussion topics, and
other activities. Figure 5 shows the number of participants in
this competition from each Kaggle ranking category, the num-
ber of past competitions that they had competed in previously,
and a distribution of their private leaderboard scores. Partici-
pants with a Novice ranking were, by far, the largest group, con-
taining a total of 2,413 people, while there were only a total of
29 Grandmasters. Nearly all of the participants with the Novice
ranking competed in one or fewer past competitions, and they
also received, on average, the lowest scores out of all partici-
pant types. The trend from this figure shows that high ranking

aligns with more past competition experience and lower (i.e.,
better) scores in this competition.

4.1. Discussion board overview

The Kaggle competition environment also provided a discus-
sion forum for communications between Kaggle and competi-
tors as well as between the competitors themselves. From the
start of the competition, participants were encouraged to dis-
cuss any aspects of the competition. The metadata collected
from this discussion board provides a useful resource to ana-
lyze various issues of the competition, such as sentiment, level
of engagement, participation, and critical topics that emerged
from the competition. The analysis performed extracted this
metadata from the discussion board from the start of the com-
petition to the cut-off date of December 28, 2019, a full week
after the final submission deadline. The data collected during
this time related to 293 discussion posts and 2,508 comments
on the posts involving 713 unique competitors.

Each discussion post was manually tagged with a label char-
acterizing the nature of the post, and a visualization of these
results is presented in Figure 6 (left). The largest categories
of topics focused on questions, discussion of the public data
sources, feature extraction and selection, preprocessing, and
modeling strategy. Some of the issues exhibited positive tones,
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Figure 4: Overview of the locations of the 58.1% of the participants who had a country of origin listed in their profiles. Japan, the USA, India, China, and Russia
were the top five countries of origin of the contestants.

Figure 5: Overview of the participants broken down by the total number of participants from each Kaggle expertise category (left), the number of previous
competitions they have participated in previously (middle), and ranking based on their final private test data scores from the private leaderboard (right).

predominantly those focused on cooperation between the con-
testants, while others, especially those focused on the use of the
public data for the public test/validation data set, were more
negative.

To classify the overall tone of the discussion board, all
text content from the discussion posts and comments were
extracted, and sentiment analysis was carried out using the
TextBlob5 package in Python. The sentiment polarity of every
post was extracted, and a histogram of the results is presented
in Figure 6 (right). A value of +1.0 represents the maximum
positive sentiment whereas a value of -1.0 represents the most
negative sentiment. The figure illustrates that the sentiment po-
larity distribution is right-shifted (with a mean greater than 0),

5TextBlob: Simplified Text Processing. https://textblob.

readthedocs.io/en/dev/

indicating a higher than average positive sentiment to the com-
petition in general. These results are presented to understand a
data-driven perspective of the subjective nature of the competi-
tion and are not meant as a comparison to other online compe-
titions.

5. Overview of the top five and medal-winning teams or in-
dividuals

As previously mentioned, the competition’s primary goal
was to find the top-performing machine learning workflows as
evaluated by the performance metrics on the private test data
set (private leaderboard). The top teams and individuals were
able to create the most accurate solutions and therefore were
able to claim the five levels of prize money. In return for the
prizes, they were obligated to share the details of their machine
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Figure 6: Overview of the discussion board topics posted (left) and a histogram of the sentiment polarity analysis of the discussion posts (right). The sentiment of
the discussions were slightly more positive than average.

learning workflows. These solutions include several steps that
are interesting in setting each solution apart from the rest of
the leaderboard. Table 2 gives a high-level overview of those
top five solutions with a brief description of the following cate-
gories:

• Preprocessing Strategy - This step includes the various
transformations that clean and prepares the data for the
modeling process. The removal of outliers and anoma-
lous behavior that might influence the models are usually
included in this process.

• Feature Strategy - Features are the aggregations of the
time-series data that are used to train the models. These
features are extracted from the available training data, in-
cluding the weather data. A better selection or engineering
of useful features enables better-informed and more effi-
cient models.

• Modeling Strategy - The selection and tuning of machine
learning models is a major component of the ability for the
solution to achieve accuracy. The top five winners were
consistent in that they used an array of model types known
as an ensemble. A more detailed description of the differ-
ent models is found in the Discussion Section.

• Postprocessing Strategy - After the models were created,
trained, and the test data predicted, many of the contes-
tants added adjustments to make slight corrections before
submission.

An open-source repository has been made available on
Github to see this documentation and reproduce the solutions6.
This repository has a 3-7 minute video for each of the winning
solutions. The technical team had the opportunity to discuss the
solutions that were submitted from each of the winning teams
or individuals on a one-hour conference call that included the
winners, many of the technical team members, and the Kaggle
project leader. Some of the anecdotal information from those
calls is included in the solution explanations. Several of the
winners used publicly available data in their solution diagrams
and in many cases these data are labelled as leaked data.

5.1. First-place solution - Group-based ensembles using Cat-
Boost, LightGBM, and MLP

The first-place winning team of the competition was made up
of Matthew Motoki of Honolulu, HI, USA, a Senior Data Sci-
entist at Iterable, and Isamu Yamashita of Yokohama, Japan,
a Machine Learning Researcher at Cannon. Their final pri-
vate test score (private leaderboard) was 1.231 and their public
test/validation set score (public leaderboard) was 0.938 with a
rank of 14. Matthew mentioned in the overview call that their
solution was influenced by an experience he had as a data sci-
ence consultant to an engineering project that focused on water

6https://github.com/buds-lab/ashrae-great-energy-

predictor-3-solution-analysis
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Table 2: Overview of the winning teams and individuals according to rank, team composition (Team), Final private test score - Private leaderboard score (Score),
Preprocessing strategy overview (Preprocess), Simplified feature explanation (Features), Modelling strategy (Modeling), and Post-processing strategy (Postprocess)

# Team Score Preprocess Features Modeling Postprocess
1 Matthew Motoki and

Isamu Yamashita
1.231 Removed anoma-

lies in meter
data and imputed
missing values in
weather data

28 features engi-
neered including
holidays

LightGBM, Cat-
Boost, and MLP
models trained on
different subsets
of the training and
public data

Ensembled the
model predictions
using weighted
generalized mean.

2 Rohan Rao, Anton
Isakin, Yangguang
Zang, and Oleg Knaub

1.232 Visual analyt-
ics and manual
inspection

35 features using
raw meter data,
temporal, building
metadata, simple
statistical features
of weather.

XGBoost, Light-
GBM, Catboost,
and Feed-forward
Neural Network
models trained on
different subset of
the training set

Weighted mean.
(different weights
were used for
different meter
types)

3 Xavier Capdepon 1.234 Eliminated 0s in
the same period in
the same site

21 features in-
cluding raw data,
weather, and
various meta data

Keras CNN, Light-
GBM and Catboost

Weighted average

4 Jun Yang 1.235 Deleted outliers
during the training
phase

23 features in-
cluding raw data,
aggregate, weather
lag features, and
target encod-
ing. Features are
selected using
sub-training sets.

XGBoost (2-fold,
5-fold) and Light
GBM (3-fold)

Ensembled three
models. Weights
determined using
publicly available
data from the pub-
lic test/validation
data set.

5 Tatsuya Sano, Minoru
Tomioka, and Yuta
Kobayashi

1.237 Dropped long
streaks of constant
values and zero
target values.

10 features using
target encoding
using percentile
and proportion and
used the weather
data temporal
features

LightGBM in two
steps to identify
model parameters
on a subset and
then train on the
whole set.

Weighted average.

meter data prediction. Both Matthew and Isamu are at the Mas-
ter level on the Kaggle platform, signifying that they each have
extensive machine learning competition experience.

The workflow of the first-place team’s solution is shown in
Figure 7. The first step of their solution involved preprocessing
the given competition dataset by removing anomalies, imputing
missing weather data values, and correcting time zones. Their
next step involved feature engineering in which they extracted
28 features, such as raw data (e.g., meter, building metadata and
weather parameters), categorical interactions between building
metadata and meters, temporal (e.g., holidays, time of the day),
various features of the weather data, and different target en-
coding features. Their model development strategy involved
training separate models, one each on different subsets of the
training dataset using three algorithms – CatBoost [29], Light-
GBM [30], and Muli-Layer Perceptrons (MLP). The training
subsets were based on meter, primary use, and site id. All
the models were tuned using a 12-fold cross-validation method
by using the following consecutive eleven months data as the

public test/validation set. Finally, individual model predictions
were combined using a generalized weighted mean approach to
obtain the final predicted values.

5.2. Second-place solution - Intensive pre-processing and a
huge XGBoost, LightGBM, CatBoost, and FFNN ensem-
ble

The second-placed team was made up of Rohan Rao, a Se-
nior Data Scientist from Bangalore, India; Anton Isakin, a Ma-
chine Learning Engineer from Nurenberg, Germany; Yang-
guang Zang a Data Scientist from Beijing, China; and Oleg
Knaub, a Data Scientist from Amberg, Germany. Their final
private test score (private leaderboard) was 1.232 and their pub-
lic test/validation set score (public leaderboard) was 0.937 with
a rank of 12. Rohan was at the Grandmaster level on the plat-
form, and this was the third competition in which he had placed
in the top 10. The other members of the team were either at the
Master or Expert levels.

The second-place solution overview is shown in Figure 8.
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Figure 7: Overview of the First-Ranked winning solution (Adapted from the
winners documentation submission and used with permission.)

This team removed the outlier data manually by visually in-
specting and filtering each building data. Their feature selection
involved calculating simple statistics of the weather and build-
ing metadata in addition to the temporal features, but there was
no focus on using sophisticated lag features. Similar to the first
place solution, this team also developed different models that
were trained on different data subsets and the entire training
set using XGBoost [31], LightGBM [30], Catboost [29], and
Feed-forward Neural Networks (FFNN). FFNN models were
built only for the meter id 0 (electrical meter). Finally, the
predictions from individual models were ensembled using the
weighted mean method, similar to the first-place team, and the
weights were determined empirically.

5.3. Third-place solution - Catboost and LightGBM with
weighted post-processing

The third-place winner of the competition was a single con-
testant named Xavier Capdepon, a Senior Data Scientist in New
York City, NY. His final private test score (private leaderboard)
was 1.234 and his public test/validation set score (public leader-
board) was 0.946 with a rank of 44. Xavier was at the Master
level on the platform and mentioned in discussion with the tech-
nical team that he has a background in Civil Engineering.

Similar to the first and second-place solution, Xavier also ap-
plied a log transformation to the target variable. His feature
engineering strategy involved computing derived weather fea-
tures, such as heat, windchill, and lagged weather features, in
addition to the temporal and building metadata, resulting in 23
features in total. The model development process consisted of
training a set of models that included Catboost [29], neural net-
works, and LightGBM [30] models. Finally, he ensembled the
individual model predictions using a weighted average method
where weights were calculated with the help of the publicly-
available datasets. Figure 9 illustrates an overview of the anal-
ysis process of Xavier’s solution.

5.4. Fourth-place solution - XGBoost and LightGBM
The fourth-place winner of the competition was a single con-

testant named Jun Yang, a student at the University of Elec-

tronic Science and Technology of China in Chengdu, China.
Jun was an Expert on the Kaggle platform. His final pri-
vate test score (private leaderboard) was 1.235 and his public
test/validation set score (public leaderboard) was 0.936 with a
rank of 48.

Like the first-place teams, Jun also extracted detailed fea-
tures such as raw meter data, weather data, building metadata,
temporal features from meter data, and lag features from raw
weather data. An overview of his solution can be seen in Figure
10. The target variable was log-transformed before training the
models. Two XGBoost models (using 2-fold and 5-fold cross-
validation) [31] were trained using the whole training set. In
addition to this, one LightGBM [30] model with 3-fold cross-
validations, as extracted from Kaggle’s public kernels, was also
trained using the whole training set. However, no systematic
approach was followed to select the optimal hyperparameters.
Some data cleaning was performed during each fold. The fi-
nal prediction was made by ensembling all three models where
weights were determined using the leaked data.

5.5. Fifth-place solution - LightGBM ensemble with post-
processing weighting

The fifth-place winning team of the competition was made up
of Tatsuya Sano, Minoru Tomioka, and Yuta Kobayashi, who
are all students at the University of Tsukuba in Tsukuba, Japan.
Their final private test score (private leaderboard) was 1.237
and their public test/validation set score (public leaderboard)
was 0.940 with a rank of 23.

The workflow of their solution is shown in Figure 11. In ad-
dition to focusing on different data preprocessing approaches,
this team experimented with varying transformations of the tar-
get (percentile and proportion based). Unlike the other solu-
tions, this team used only LightGBM [30] applied in a two-step
process. In the first step, separate models were developed for
each building and meter to determine one of the model param-
eters, number of trees, using a subset of the training set. In
the next step, this optimal parameter was used to train separate
models for each building and meter. Finally, individual model
predictions were ensembled using a weighted average where
the weights were determined based on the public dataset.

5.6. Other medal winners

In addition to the top five winners, other ranges of contes-
tants were able to win medals based on their final standing in
the competition. Figure 12 illustrates an overview of the medals
that were won by the participants in this competition. The con-
test platform awards Gold (top 0.2%), Silver (top 5%), and
Bronze (top 10%) medals to contestants based on where their
final private test score (private leaderboard) rankings placed
them at the end of the competition. Although the Novice and
Contributor groups had the most participants, they observed a
high percentage of participants who did not earn any medals
(about 90%). Participants with a Grandmaster ranking were
numbered at 29 - a much smaller demographic than other rank-
ings - but about a third of these participants were awarded a
medal of some kind. This situation was unsurprising since

11



Figure 8: Overview of the Second-Ranked solution (Adapted from the winner’s documentation submission and used with permission.)

Figure 9: Overview of the Third-Ranked Solution (Adapted from the winner’s
documentation submission and used with permission.)

Grandmasters have much more experience in machine learning
and using the platform.

6. Shared machine learning workflows using notebooks

Beyond the top winning teams, there were numerous partic-
ipants throughout the competition timeline that created analy-
sis examples to share with the public. While this may seem
counter-productive towards winning the competition, a strong
sense of community spirit and sharing occurred, especially in
the early phases. The competitors saw sharing as a means of
enhancing the final result by providing a level playing field for
some of the more mundane tasks in the machine learning pro-
cess, such as detecting erroneous data. These shared workflows

were in a format known as a Notebook, which gives participants
the ability to share analysis code, instructions, explanation, and
other forms of content in a single, shareable page.

6.1. Overview of the notebook topics
Figure 13 provides a meta-analysis of 415 notebooks that

were shared by competition participants. The goal of this anal-
ysis was to guide building science analysts on where to start if
they would like to learn from the content created by the compe-
tition. The first category was the programming language used in
the various notebooks. Python7 and R8 were the only two pro-
gramming languages used, where Python was chosen by over
96% of the competitors. The following breakdown focused on
the use of specific machine learning models. Gradient boost-
ing trees dominated with almost 84% of the notebooks using
this model type. Neural networks and linear regression were
two other specific model types that were used, and the cate-
gory model stacking signifies notebooks that used ensembles
of models.

We also examined the general categories of the analysis note-
books by manually assigning tags to each one. The largest
group was related to the preprocessing of data, with almost
half of the notebooks dedicated to this topic. Preprocessing
emerged as a critical aspect of the performance of the winning
models. Prediction models themselves accounted for a third
of the notebooks, with the rest split between exploratory data

7https://www.python.org/
8https://www.r-project.org/
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Figure 10: Overview of the Fourth-Ranked solution (Adapted from the winner’s documentation submission and used with permission)

Figure 11: Overview of the Fifth-Ranked solution (Figure adapted from the
winner’s documentation submission and used with permission)

analysis (EDA) (16.1%) and data scraping (3.86%). Figure 13
analyzes the self-assigned tags that the users gave their note-
books upon posting them. These labels include descriptors for
aspects, such as whether the notebooks are suitable for begin-
ners or as starter code. This tag descriptor breakdown includes
technical descriptors such as deep learning, ensembling, and
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Figure 12: Breakdown of the medal winners from the competition.

feature engineering.

6.2. Complete reproducible machine learning solution exam-
ples

In addition to the top five winning teams, we were able to ex-
tract full machine learning workflows from the notebooks and
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Figure 13: Overview of Analysis Notebooks in the Competition: programming language (top left), model category (top right), general category tag (bottom right),
and self-assigned category tag (bottom left)

discussion boards that were openly shared by many of the com-
petitors. Table 3 shows a breakdown of these solutions. This
table is meant to serve as a directory for future users who want
to learn about specific types of machine learning and data anal-
ysis.

7. Discussion

This competition uncovered several key insights into the
scalability of machine learning for the energy prediction con-
text. This section gives an overview of the general knowledge
gained from the competition that can be utilized and expanded
upon by the data-driven building energy prediction domain.

7.1. Objective judgment of model types and steps for building
energy prediction

The competition’s primary goal was to be able to compare
numerous configurations of modeling techniques developed by
thousands of machine learning practitioners, hundreds of them
being experts in the field. Several vital observations became
apparent through the analysis of the top five winning solutions
as well as the dozens of whole machine learning solution ex-
amples. These insights can be considered generalizable for the
type of data provided in the competition.

7.1.1. Pre and postprocessing steps are essential and can’t al-
ways be automated

One of the key differences between the top-performing solu-
tions and solutions further down the leaderboard was the meth-
ods that the contestants used to filter the data before modeling
and the corrections they applied after prediction and before sub-
mission. For example, the top two winning teams explained that
they spent a significant amount of time removing anomalous
behavior from the dataset. The second-place solution described
how they ended up manually doing this process through visu-
alization for all meters; this insight was informative for a team
with Grandmaster and Master machine learning experts. This
insight indicates the importance of domain understanding and
the difficulty in fully automating the process of removing data
that adds false signals to the training data. For postprocessing,
the top winners also included various methods to apply weight-
ings and created complex ensembling frameworks to develop
high accuracy with such a high amount of training data.

7.1.2. Gradient boosting tree models dominate
One of the most prominent outcomes of the competition was

the domination of tree-based machine learning models, specif-
ically gradient boosting trees. This type of model is prevalent
in many machine learning competitions, and it proved to be the
most commonly applied to this context. It was a part of all win-
ning solutions, and most of the posted analysis notebooks from
the rest of the leaderboard. These models are popular because
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Table 3: List of Full Solutions found in the Notebooks.
Preprocessing key: RO = Remove Outliers; I = Imputation
Feature strategy key: H = Holiday Features; CS = Catgorical Statistical features
Modeling strategy key: LGBM = LightGBM; CB = CatBoost; NN = Neural Network; RF = Random Forrest; LR = Linear Regression; XG = XGBoost; LM =

LightMORT; The parenthesis after each model indicate how many models are used in the ensembles.
Post-processing key: EM = Ensemble Model

Rank Team Name Score Pre-
process

Feature
Strategy

Features Modeling Strategy Post-
Process

9 MPWARE 1.241 RO, I H, CS - LGBM(7), CB(4), LM(1),
NN(4)

EM

13 Tim Yee 1.243 RO, I CS - LGBM(3) EM
20 [ods.ai] PowerRangers 1.244 RO, I - - LGBM(15), NN(5) EM
25 Georgi Pamukov 1.245 RO, I H - LGBM, NN, LR EM
46 Fernando Wittmann 1.248 - - - LGBM(9) EM
52 Pavel Gusev 1.25 - - - LGBM(4) EM
77 CR7 1.256 RO, I H, CS 50 LGBM(10), CB(1) EM
173 Electrium Z 1.267 RO, I H, CS - LGBM, CB, XG, RF, NN EM
367 patrick0302 1.28 RO, I H, CS 40 LGBM(7) EM
497 Hiroyuki Namba 1.286 RO - 18 LGBM(32) EM
1545 KottayamKings 1.31 RO H 14 LGBM (1) -
1678 Taegwan Kim 1.32 - H 14 LGBM (1) -
1703 Vishwanath R Kulkarni 1.326 RO, I CS 25 LGBM (1) -
1710 Georgios Chatzis 1.327 RO - 17 LGBM (1) -
1727 UniTartu ML 1.332 RO, I CS 27 LGBM (1) -
1866 Sergei Tsimbalist 1.369 RO, I - 18 LGBM (1) -
1920 Hitesh Somani 1.378 RO, I - 24 LGBM (1) -
2058 Clement ut 1.385 RO, I CS 27 LGBM (1) -
2066 Atharva Patel 1.386 RO H 24 LGBM (1) -
2082 CodeNinja 1.387 RO, I - 22 LGBM (1) -
2130 Ergo Nigola 1.39 RO, I CS 29 LGBM (1) -
2163 mevrick 1.393 RO, I H 21 LGBM (1) -
2232 Viswajith 1.397 RO, I H 16 LGBM (1) -
2373 MANISH SHUKLA 1.41 RO, I - 21 LGBM (1) -
2400 Stéphane Thibaud 1.412 RO, I - 15 LGBM (1) -
2538 luisfer 1.436 I - 13 NN(1) -
2549 Srinivas M Besthar 1.439 I - 22 LGBM (1) -
2589 Vikas Singh 1.452 I - 21 LGBM (1) -
2646 Ishaan Jain 1.47 I - LGBM (1) -
2761 Gouher Danish 1.526 RO, I - 17 LGBM (1) -
2767 Paul Larmuseau 1.529 I - 23 LR -
2801 Aldrin 1.549 I - 20 RF(1) -
3077 Pierre-Matthieu Pair 1.839 I - 13 LGBM (1) -
3258 Sreelatha Renukuntla 2.265 - - 19 RF(1) -
3296 Sneaky Weasels 2.393 RO, I - 4 RF(1) -
3372 Ceren Iyim 2.704 I CS 24 LGBM (1) -
3514 Jakub Ciborowski 4.21 - - 21 LGBM (1) -

they provide high accuracy and flexibility that work well with
numerous types of data. The most commonly used model was
the LightGBM framework that is designed to be fast in train-
ing speed and low in memory usage, while still maintaining
high accuracy9. Other gradient boosting models used include

9https://github.com/microsoft/LightGBM

CatBoost10, XGBoost11, and LiteMORT12. A few other models
were used in the large winning ensembles such as Multi-Layer
Perceptrons, Feed-forward Neural Networks (FFNN), and Ran-
dom Forest models.

10https://catboost.ai
11https://github.com/dmlc/xgboost
12https://github.com/closest-git/LiteMORT
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7.1.3. Ensembles of models create more accurate (but slower)
solutions

An analysis of the top five solutions showed that more com-
plex ensemble-based models were necessary to create the most
accurate solutions. The large ensemble methods used created
numerous models that were trained on various subsets of the
dataset, such as the type of building or meter. Structuring mod-
els in this way creates stronger results through diversity of mod-
els that reduce bias and variance by incorporating different esti-
mators with different patterns of error. Despite their superiority
in terms of accuracy, large ensembles of complex models like
gradient boosting trees can be computationally intensive and
can take hours, or even days to complete the training and pre-
diction process. The trend of using ensemble methods was also
identified in the publications of building science research field
[4]. A worthy area of further analysis for this competition is
to compare the complexity versus the practical use trade-off for
the winning models versus those found further down the leader-
board.

7.2. Convergence of skills and talent from the engineering and
data science domains

It was apparent that a majority of the participants were not
members of the building science or research community. Most
contestants who were in the top medal-winning levels of the
leaderboard tended to be at least at the Expert machine learn-
ing level, however, there were several exceptions. Despite the
large number of data science experts, there were some examples
of engineering knowledge that aided the winning solutions. A
member of the top team and the third place winner had an en-
gineering background that was relevant to the competition con-
text.

7.3. Dataset creation and preparation

The amount of networking needed to collect enough datasets
for the competition was higher than expected. Despite a wide-
spread request for data at the ASHRAE Winter Meeting in At-
lanta in January 2019, the majority of the datasets either came
from personal contacts of the technical team or from publicly
available online sources. Another major challenge for the tech-
nical team was creating a consistently formatted and organized
schema derived from all the various data sources. Several is-
sues related to mistakes in cleaning became apparent after the
start of the competition. For example, one of the datasets had
inconsistent units and wasn’t properly converted to kWh. An-
other situation was that the weather data had a time-stamp that
was not aligned with the local time for the individual meters. In
both of these cases, the winning competitors were able to recog-
nize the issue and crowdsource a solution. The community was
able to create publicly available notebooks that helped level the
competitive playing field despite the issues.

7.4. Inclusion of publicly available data in the competition

The technical team’s primary goal in preparing for the com-
petition was the development of a big enough data set to make

the competition viable. Having a large and diverse dataset en-
sures that the winning solutions will generalize well to many
other types of buildings located around the world. The decision
was made early in the process to include the use of publicly
available data due to its availability and the value that it can
provide for contestants in building models. The planning team’s
strategy was to protect the integrity of evaluating the winning
team’s solution using only non-public data for use in the final
private test data set (private leaderboard), which would be the
determining factor for the winning teams. The publicly avail-
able data would only be used for the public test/validation data
set (public leaderboard) portion of the competition. This situa-
tion would allow for the use of a larger dataset while protecting
the integrity of evaluating the winning models. It is not uncom-
mon in machine learning competitions to have different types
of hold out data sets, with one focused on being used as a tool
to gauge short-term success and another to serve as the final
deciding set to determine winners.

The competitors were not initially notified that portions of
the public test/validation data set (public leaderboard) were
openly available online, but the competitors quickly found
many of the datasets and introduced them as leakage data in the
discussion boards. Although it was expected that these public
data sets would be discovered, the negative tone on discussion
topics about this issue was not expected; the competitors felt
that using these data was unfair and that the public leaderboard
became less useful. This frustration was diminished for most
of the participants, however, as open-sourced scraping methods
were shared on discussion threads to collect and disseminate
these data. All publicly-available data sets discovered by the
contestants were shared openly and no contestant had an unfair
advantage due to these data. In fact, there were many creative
uses of the publicly-available data that enriched the competition
by providing more potential for validation data set generation.
Not all of the public data sets were discovered, and the winning
solutions did not use all the publicly available data that was un-
covered by participants on the discussion boards.

While the contestants considered the publicly available data
sets in the public test/validation data set (public leaderboard)
as leakage, these data were not used to determine the winner.
The winning teams were judged based on their performance on
the final private test data (private leaderboard). The only leak-
age that occurred concerning this data set was a single site that
was discovered to have data available online for which the com-
petition planning committee was unaware. This data set was
switched to the public leaderboard data set towards the end of
the competition, and its impact was removed from the resulting
competition scoring at the conclusion.

Future machine learning competitions should avoid using
publicly available data in even the public leaderboard compo-
nent of the structure based on the experience of the GEPIII
competition planners. This element produced an amount of
frustration that was more disruptive than what benefit the data
provided. If public data is included, the contestants should be
notified at the beginning of the competition of their presence.
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7.5. Generalizability of the competition results
While this competition was a significant step in the direc-

tion of the comparability of machine learning techniques for
building energy prediction, there are still several limitations to
its results in application to practice and research. The primary
constraint is the diversity of the data set created for the com-
petition; most of the buildings are from the education sector,
namely higher education such as university campuses. The re-
sultant models developed are therefore fitted on this type of
data, and using these models on other types of building data
from different sectors remains untested at this time. The goal of
this competition was to compare techniques objectively and use
extensive, open data to do that. A lot of potential remains for
other entities to grow the data set used in this competition and
test whether the developed techniques need various tuning or
modifications to be more generalizable. This effort will likely
need to be community-driven, with data disclosure for buildings
becoming the norm in cases where personal privacy is not an is-
sue. In addition, there are more challenging machine learning
applications such as prediction of peak loads or time and sea-
sonal differentiation of savings that could be the objective and
be tested in the context of a competition. The planning team
foresees a future Great Energy Predictor competition could in-
clude an even larger data set with a better representation of the
different building types and climates worldwide and applied to
more complex objectives that could better serve the application
needs of the domain.

8. Conclusion

The competition’s objective was to create value for building
industry practitioners who want to improve the prediction mod-
els used for building performance analysis. This competition
was successful at creating the most extensive crowdsourced ma-
chine learning solution and benchmarking exercise in the build-
ing energy research domain. Users of these techniques can be
confident that the accuracy of the models has been verified as
compared to tens of thousands of alternative models developed
by numerous experts. There are several areas of targeted output
for the broader community to learn from, especially those that
are just starting in data science to disseminate these models.

8.1. A reproducible repository of the winning solutions
The code and instructions for execution for the top five win-

ning solutions have been posted in a Github along with guide-
lines of how to reproduce and use them in various applications
in the built environment13. These solutions also include less
complicated versions that allow for users to decide between the
best complexity to accuracy balance they are trying to achieve.
This repository consists of the original code that was submitted
by the winning contestants, their submitted solution summary
document, a link to the explanation video provided by the win-
ning team, and detailed instructions on how to reproduce each

13https://github.com/buds-lab/ashrae-great-energy-

predictor-3-solution-analysis

solution including information about resources, run time, and
computational effort14.

8.2. Open-source building energy benchmarking data

The training data set (2016) for this competition is still avail-
able for download and use from the Kaggle competition web-
site15. Researchers can even upload predictions as a Late Sub-
mission and see where their predictions fall as compared to
the public test/validation data set (public leaderboard) and fi-
nal private test data (private leaderboard). The technical team
for the competition has released a more extensive data set that
includes the training (2016) and public test/validation (2017)
data from this competition in addition to numerous other build-
ings16. This data set is released as the Building Data Genome
Project 2 (BDG2) [28], the next iteration of the BDG [32]. This
data set is also available as a sandbox in the Kaggle data page17.

8.3. Curated directory of machine learning workflow examples

This paper has outlined the key categories of data science
knowledge created through publicly-shared Kaggle notebooks.
A continuously updating wiki has been set up to create a venue
for notebooks from this competition to be tagged and posted
according to various categories18. This wiki outlines the best
notebooks for tutorials in which building science professionals
can use to expand their skill set. This wiki is part of a repository
that includes the data and code used to create Figures 1-6 and
12-13 as well as other notebooks describing how the data was
collected for this publication19.

8.4. Future workshops and seminars

Several ASHRAE Seminars and workshops were planned to
disseminate the results of the GEPIII competition. These sem-
inars will allow the winners to meet and address the ASHRAE
community, to transfer knowledge, and to learn more about the
building science community. A conference track devoted to
an overview of the top three winning solutions was held at the
ASHRAE Summer Meeting held online in June 2020.

8.5. Future machine learning competitions

8.5.1. CityLearn challenge
Beyond data-driven energy prediction methodologies, as de-

veloped in this competition, are methods and algorithms for di-
rect energy management and control. The major challenge is
the scalability of these approaches across many buildings, given

14https://github.com/buds-lab/ashrae-great-energy-

predictor-3-solution-analysis/wiki
15https://www.kaggle.com/c/ashrae-energy-prediction
16https://github.com/buds-lab/building-data-genome-

project-2
17https://www.kaggle.com/claytonmiller/building-data-

genome-project-2
18https://github.com/buds-lab/ashrae-great-energy-

predictor-3-overview-analysis/wiki/Curation-of-Machine-

Learning-Tutorials
19https://github.com/buds-lab/ashrae-great-energy-

predictor-3-overview-analysis
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their unique characteristics. Reinforcement learning (RL) has
gained popularity in the research community as a model-free
and adaptive controller for the built environment. RL has the
potential to be an inexpensive plug-and-play controller that can
be easily implemented in any building, regardless of its model
(unlike model predictive controllers or MPCs), and coordinate
multiple buildings for applications, such as demand response
and load shaping. Related to these motivations, the CityLearn
Challenge was held in early 2020 [33]. CityLearn is an Ope-
nAI Gym environment for the implementation of RL agents for
demand response at the urban level. The environment allows
the implementation of single-agent (as a centralized agent) and
multi-agent decentralized RL controllers.

8.5.2. Great Predictor IV competition
Plans are being made to continue the ASHRAE Great Predic-

tor Machine Learning competitions with the possible objective
of time-series classification focused on building performance
or operations data from building management and automation
systems. This objective will likely include the use of millions
of data streams of building management system data from thou-
sands of buildings. The focus of this prediction will focus on the
automation of meta-data inference of these systems such that
the implementation of energy savings calculation techniques
become more scalable, and new markets are created due to this
lower barrier.
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