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Abstract

Many energy performance analysis methodologies assign buildings a descriptive label that represents their main activity, often
known as the primary space usage (PSU). This attribute comes from the intent of the design team based on assumptions of how the
majority of the spaces in the building will be used. In reality, the way a building’s occupants actually use the spaces can be different
than what was intended. With the recent growth of hourly electricity meter data from the built environment, there is the opportunity
to create unsupervised methods to analyze electricity consumption behavior to understand whether the PSU assigned is accurate.
Misclassification or oversimplification of the use of the building is possible using these labels when applied to simulation inputs or
benchmarking processes. To work towards accurate characterization of a building’s utilization, we propose a modular methodology
for identifying potentially mislabeled buildings using distance-based clustering analysis based on hourly electricity consumption
data. This method seeks to segment buildings according to their daily behavior and predict which ones are misfits according to their
assigned PSU label. The process assigns a flag indicating potential mixed-use or a misclassified PSU label based on uncharacteristic
electricity use behavior. Our results on two public data sets, from the Building Data Genome (BDG) Project and Washington DC
(DGS), with 507 and 322 buildings respectively, show that 26% and 33% of these buildings are potentially mislabelled based on
their load shape behavior. Such information provides a more realistic insight into their true consumption characteristics, enabling
more accurate simulation scenarios. Applications of this process and a discussion of limitations and reproducibility are included.

Keywords: Mixed-use buildings, Building energy use, Building energy benchmarking, Building performance rating,
Primary-use-type analysis, Load profile clustering

1. Introduction

One of the major goals of researchers in the built environ-
ment is to reduce the electricity footprint of the built environ-
ment; this objective is crucial for meeting the required sustain-
ability goals to address issues like climate change. As such,
the importance of evaluating electricity consumption behavior
of existing buildings, as well simulation results of retrofitted
infrastructures, is paramount. In recent years, there has been
a proliferation of unsupervised machine learning approaches
and visual analytics [1, 2] for energy systems in diverse ap-
plications such as consumer segmentation [3], operations opti-
mization [4, 5], energy forecasting [6] and anomaly detection
based clustering [7]. Such applications benefit building own-
ers by giving them the right tools to evaluate building perfor-
mance and carry out well-informed inspections to mitigate fail-
ure and operational costs and predictive maintenance. These
approaches contribute to the increasing collaboration in the in-
terdisciplinary field of statistical learning and visual analytics
in the building domain. This field uses Internet-of-Things (IoT)
sensors such as smart meters with different temporal resolu-
tions.

1.1. Buildings sometimes behave differently than their label

When it comes to classifying commercial buildings using
human-made categories, the primary space usage (PSU) label
is used to segment the population of buildings into groups of
buildings that are theoretically being used for similar purposes.
Evaluation methods for buildings rely on these building iden-
tifiers, or labels, to facilitate comparison among their industry
or conventional use type. For example, if a building has a PSU
tag of office, the performance analysis of this building uses the
boundary conditions of typical office space: occupants are pro-
fessionals who work 8 am-5 pm and use certain types of office
equipment (e.g., computers, printers, etc.). Behavior or con-
sumption that falls outside these predefined norms of this cat-
egory will trigger further analysis, especially in the categories
of building simulation and energy benchmarking. These behav-
iors ultimately serve as proxies of human activities and occu-
pancy within the buildings; thus, atypical buildings electricity
consumption patterns will correspond to atypical usage of ap-
pliances and loads by the users in such infrastructure. Under-
standing the users habits and consumption patterns is key to
achieve better and more sustainable control strategies [8, 9].
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1.2. Importance of labels to building simulation

Building performance simulation techniques require PSU la-
bels as an accurate representation of real buildings. The la-
bels are essential in physics-based models but equally crucial in
data-driven simulations when it comes to the operational con-
trol schedule. A given building type will have a specific con-
trol schedule which determines its operational hours as well as
consumption behavior and system boundaries. Thus, the im-
portance of correctly knowing this label type helps designers
and engineers perform a more accurate depiction of real-world
buildings. These labels are the basis for initial input assump-
tions such as diversity schedules and plug load power density
and are used to understand the electricity patterns that define a
building [10]. If a building is mislabeled, the simulation process
would be inaccurate and calibration of the model more tedious.

1.3. Importance of labels to building energy benchmarking

Building performance benchmarking is a growing field that
includes useful tools for decision-making for portfolio analyt-
ics [11], policy-makers, and different stakeholders with variable
domain expertise. Such building identification mechanisms
provide a more holistic understanding of the different sources
of uncertainty, particularly scenario-related ones where exter-
nal conditions are imposed on the building [12], such as fixed
operating hours based on an industry-defined schedule. The la-
bel that assigns the use of a building is vital for building energy
benchmarking as they determine who the peers of a building
will be in the analysis. However, as investigated by [13], these
labels are inflexible to the reality of modern buildings since
most of the current infrastructure cannot be classified entirely
as one category. This situation is particularly challenging when
we considered the plethora of existing buildings where their la-
bels were assigned decades ago and have had served different
uses and purposes over the years.

1.4. Contribution

To address the deficiencies in how a building is assigned a
PSU, we propose a modular methodology for systematic vali-
dation of the human-made building classification. This method-
ology leverages its modularity for homogenizing power meter
readings based on different temporal contexts and aggregation
functions. These PSU labels might not be an accurate represen-
tation for most buildings with diverse uses and loads but they
still carry enough information for detailed and grey-box simu-
lations [12]. Hence, the building segmentation is carried out in
an unsupervised way. The clustering of buildings will make use
of raw electricity consumption aggregated over a specific time
window, grouping them based on their load profiles. Finally, the
resulting clusters are evaluated with commonly used validation
metrics and then analyzed to identify potentially misclassified
buildings based on the distribution of the buildings in each PSU
type. We differentiate this work from previous PSU-focused in-
vestigations by focusing on the segmentation of existing labels
as opposed to creating a new framework for labelling [13].

1.5. Previous work

In terms of building performance benchmarking and analy-
sis, PSU labels play an essential role in the segmentation and
homogenization of their groups. Conventional building bench-
marking scenarios aim to establish how much better or worse a
given building performs as compared to similar buildings (i.e.,
peers in the same group). Thus, it is important to specify these
groups correctly, and making sure a building truly belongs to its
label [14]. However, these human-made categories for group-
ing (PSU) are inflexible to the reality of modern infrastructures
and are often inconsistent with the observed consumption be-
havior of the building [13].

Existing ways to analyze building electricity consumption
and performance can be divided into direct and indirect clus-
tering methods [15]. The former relies on analyzing the raw
meter data (i.e., kWh hourly readings), and the latter uses fea-
tures extracted from the meter data. When using raw meter
data, the traditional way of representing such consumption pat-
terns is with daily profiles, usually divided into hourly readings
[16]. On the other hand, indirect clustering uses statistical or
learned features from the readings themselves. Such features
can be defined beforehand and applied to the data [17] or can
be automatically extracted [18]. These daily profiles, or load
profiles, have a wide range of applications, from building en-
ergy simulation to occupancy and load prediction. In terms of
clustering, the two most common types of clustering algorithms
used for building data are K-Means and Hierarchical Cluster-
ing [19, 20, 1]. However, other machine learning techniques
such as Artificial Neural Networks (ANN), Support Vector Ma-
chines (SVM), and K-Shape have also been used primarily for
forecasting [21, 19, 22, 23].

In the field of anomaly detection, an end-user perspective
is usually the focus [24], interpretation is sought through in-
verse modeling with some discrepancies due to meta-data [25],
or sometimes the process treated as a side-product of building
benchmarking. Anomaly detection is sometimes treated as a
way of understanding occupancy schedules and user demand
[8, 26, 27, 28] and such building performance simulation are
occupant-centric and close to real-world conditions [29]. Oc-
cupancy behavior is most often used to design better control
strategies that suit the dynamic needs and conditions of a user
and the indoor space, respectively, [9], but also as a design fea-
ture for future buildings yet to be built [30].

Another branch of research focuses more on the benchmark-
ing and assessment of electricity consumption of such buildings
[31]. Several studies exist addressing benchmarking models us-
ing the machine learning algorithms as mentioned earlier and
other sophisticated tools as well (i.e., decision trees [32] and
stochastic frontier analysis [14]). [13] summarizes this clearly
and proposes three fundamental load shape profiles from raw
meter data as a baseline for benchmarking based on a list of
more than 3,000 non-residential and residential buildings.

In this paper, we present our proposed methodology in Sec-
tion 2. Details about the experiments and results are presented
in Section 3, and a discussion of the implications of the results
and possible applications are found in Section 4. Finally, an
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overview of the concluding remarks, reproducibility, and next
steps are found in Section 5.

2. Methodology

To build upon the previous literature, we present a methodol-
ogy that utilizes two open data sets of electrical meter data from
buildings to demonstrate the clustering of daily load profiles
to detect buildings that can be considered misfits as compared
to their PSU label peers based on detection of uncharacteristic
consumption behavior.

2.1. Datasets

This study focuses on two main data sources of non-
residential buildings (see Table 1). The Building Genome
Dataset (BDG) project is an open dataset from 507 non-
residential buildings that includes hourly, whole building elec-
trical meter data for one year as well as metadata such as indus-
try type and primary space usage. The second dataset comes
from the Department of General Services (DGS) from Wash-
ington, DC. This public dataset contains 15-minute interval
electrical meter data and more building information of many
buildings on the district. The overview of the data analysis
methodology is presented in Figure 1.

2.2. Preprocessing

Since each dataset has a different data collection period and
not all buildings had meter data from all the available peri-
ods, we first proceeded to find the time range with the most
number of buildings metered. The summary of the re-sampled
datasets is found in Table 1. We found that in the Building
Genome Dataset (BGD), 368 buildings (roughly 72% of the
dataset) have hourly data from January 1st to November 30th of
2015. On the other hand, buildings from the Washington D.C.
Dataset (DGS) have hourly data (originally 15-minute readings
that were re-sampled to hourly) from February 2nd, 2016 to
March 2nd, 2018. Additionally, the DGS dataset had 22 unique
labels, with many of them having only one building per cate-
gory. We decided to drop the least frequent labels (less than 15
buildings) and keep 271 buildings (roughly 84% of the dataset).
This step allows us to have the same number of samples for
all buildings in their respective datasets. Figure 2 and Figure
3 show the PSU label distribution for the re-sample BDG and
DGS dataset, respectively.

2.3. Context Extraction

After limiting the number of points of each dataset, we added
a temporal context filter. This step allows us to generate a
dataset based on specific situations that will make the data more
homogeneous. We implemented three different types of con-
texts: weekday, weekend, and fullweek. These contexts will
only keep the electricity consumption readings that occurred on
a weekday, weekend, or any day of a week, respectively. In
this way, we create different scenarios where we can analyze
the buildings’ electricity consumption behavior. This type of
analysis is required since commercial buildings have a clearly

unique consumption behavior due to operational hours. Fig-
ure 4 shows an example of two Office buildings from the BDG
dataset where we can observe the different behaviors across dif-
ferent contexts. Additionally, this modularity allows the user to
add any new context if needed.

2.4. Daily Load Profile Generation
As a final step, we extract the daily profile for each building

based on an aggregation function. Let t ε [0, 23] be the hour
of the day, and Ld(t) the electricity consumption of a building
at time t on day d in kWh. The daily profile is expressed as
24 data points, i.e. Ld(0), . . . , Ld(23). Since the datasets
have been filtered to the same time range, their datasets have the
same number of daily profiles. Up to this point, each building’s
hourly readings can be reshaped as the following matrix where
n is the number of available days for the building in the dataset
(see Table 1): 

L1
0 L1

1 . . . L1
23

L2
0 L2

1 . . . L2
23

...
...

. . .
...

Ln
0 Ln

1 . . . Ln
23


Finally, this matrix is aggregated into one daily profile 1x24

vector. We defined an average and median daily profile by cal-
culating the column-wise mean or median, respectively.

2.5. Building Clustering
The objective of clustering is to find homogeneous groups

(clusters) with significant differences among themselves. We
use three different clustering algorithms in this paper, but other
unsupervised learning algorithms can be used or added. Before
applying any algorithm, the datasets were z-Normalized [35].
The purpose of this data standardization technique is to convert
all data samples into a common scale for better comparison, a
common practice when dealing with distance-based clustering
algorithms that emphasis the shape of the profile rather than the
value [36].

The first algorithm we studied is K-Shape clustering (see Al-
gorithm 1). This algorithm was developed to be used with time-
series data since it uses cross-correlation as a distance measure
that is invariant to scaling and shifting. Thus, considering more
the shape of the time series than actual values [37].

The second chosen algorithm is K-Means clustering (see Al-
gorithm 2). This algorithm has been applied in many domains
[38] and is the basis of K-shape [37]. Also, [1] showed that
it is one of the most popular approaches for smart meter and
portfolio analysis.

As for the final algorithm, Hierarchical clustering was se-
lected (see Algorithm 3). This unsupervised learning method is
also widely used for portfolio analysis alongside K-Means [1]
and has two types of approaches: agglomerative and divisive.
The latter is a bottom-up approach in which each data point
starts as a cluster on its own and pairs of clusters are merged as
the hierarchy moves up. The former, a top-down approach, fol-
lows the opposite strategy by starting with one big cluster and
splits recursively as the hierarchy moves down. For our study,
we opted for the agglomerative strategy.

3



Figure 1: Overview of the proposed modular methodology. First, the temporal context is extracted, then the load profile is generated, later clustering takes place,
and finally, the PSU distribution is evaluated to identify the mixed-use type buildings.
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Table 1: Dataset details.

Properties Dataset 1 Dataset 2

Name Building Data Genome (BDG) Washington DC (DGS)
Location Various Washington D.C., USA
Reference [33] [34]
Number of buildings (original) 507 322
Number of buildings (after cleaning) 368 271
Date range 2015-01-01 - 2015-11-30 2016-02-02 - 2018-03-02
Number of days 334 523
Number of load profiles 122,912 141,733
Number of building types 5 22 (filtered to 7)

Figure 2: Primary-Space-Usage (PSU) label distribution in filtered Building
Genome Dataset (BDG).

Figure 3: Primary-Space-Usage (PSU) label distribution in filtered Washington
D.C. Dataset (DGS).
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Figure 4: Z-Normalized daily profiles grouped by context for two Office build-
ings from the BDG dataset. The temporal contexts clearly show the difference
in consumption behavior. Each building had 238, 96, and 334 weekday, week-
end, and fullweek load profiles respectively

2.6. Clustering Validation

While many metrics can be used to quantify the quality of a
cluster, we settled for the Silhouette Score (SC) since it captures
the trade-off between within- and between- cluster distances (a
and b respectively) and it is easier to interpret [39]. The within-
cluster distance is the mean distance between a datapoint i and
all other datapoints j in the same cluster (d(i, j)). It can be
seen as a measure of how well i was assigned to its cluster (the
smaller the value, the better).

ai =
1

|Ci| − 1

∑
j∈Ci,i, j

d(i, j) (1)

On the other hand, the between-cluster distance is the small-
est mean distance of a datapoint i to all other points j in any
other remaining cluster.

bi = min
k,i

1
|Ck |

∑
j∈Ck

d(i, j) (2)

The range of the SC is [-1, 1]: negative values indicate incor-
rect cluster assignment (as a different cluster is more similar),
values near 0 indicate overlapping clusters, and values close to
1 highlight the homogeneity of a cluster.

S Ci =
bi − ai

max(ai, bi)
, ε [−1, 1] (3)

Such a metric was evaluated for a k clusters from 2 to 10. For
each algorithm, the number of clusters was determined visually
using the elbow method: number of the cluster at which the
performance metric stops improving (reaches a plateau)).

2.7. Mixed Use Type Identification

Since all the algorithms perform unsupervised learning, the
resulting clusters will not be labeled accordingly to a particular
PSU but rather with numerical indices. Therefore, in order to
assign a PSU label to such clusters, we assume that the build-
ing class determines the underlying PSU label of each cluster
with highest number of instances in the cluster, i.e., in a cluster
where 90% of all Office buildings are tallied, the cluster can be
treated as an Office cluster.

Algorithm 1: K-Shape Clustering
Determine the number of clusters (k)
Initialize k number of centroid randomly
repeat

for every data point do
for every centroid do

- calculate shape-based distance between
datapoint and centroid

- assign datapoint to cluster with lowest
shape-based distance away

end
end
for every cluster do

- extract cluster shape
- update centroid to the cluster shape

end
until no data point has changed cluster assignment

Algorithm 2: K-Means Clustering
Determine the number of clusters (k)
Initialize k number of centroids randomly
repeat

for every data point do
for every centroid do

- calculate distance between datapoint and
centroid

- assign datapoint to cluster with lowest
distance away

end
end
for every cluster do

- calculate the cluster mean
- update centroid to the cluster mean

end
until no data point has changed cluster assignment

Algorithm 3: Agglomerative Clustering
Determine the number of clusters (k)
Initialize every data point as a unique cluster
repeat

for every pair of clusters do
- calculate distance between clusters
- merge pair of clusters with the lowest distance
away

end
decrease total number of clusters

until total number of clusters reached k

6



Figure 5: Silhouette Scores for all possible scenarios and datasets. In the BDG dataset, weekday contexts outperform weekends whereas, in the DGS dataset, all
temporal contexts are closer in score value.
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Table 2: Summary of methodology options for the experiments carried out.

Methodology Step Options

Dataset BDG, DGS
Context weekday, weekend, fullweek
Aggr. Function average, median
Algorithm K-shape, K-means, Agglomerative Clustering
Algo. Parameter k ε [2, 10]

Figure 6: Silhouette scores sorted in each cluster for K-Means and Hierarchi-
cal clustering with k = 3. The average score of the algorithm is represented
by a dashed red line. K-Means achieves a slightly higher average score mainly
because all samples have a positive score, indicating a more homogeneous clus-
tering.

3. Results

The current methodology allows us to make a plethora of
combinations based on datasets, contexts, daily profile aggrega-
tion functions, algorithms, and the different parameters for the
algorithm. The total number of possible experiments will be de-
termined by multiplying their available options. Table 2 shows
the different options we used for a total of 486 experiments;
this number is the result of all the possible combinations of the
methodology steps. The modularity in this methodology allows
the incorporation of more options in any step of the pipeline,
i.e., if holidays or a regression profile needed to be assessed,
the user would only need to define them as a new context and
daily profile aggregation function respectively.

As mentioned previously, to evaluate the performance of the
cluster for different values of k across the different experiment
setups, we focused our attention on the Silhouette Score. While
other metrics are also widely used to compare clustering per-
formance (i.e., cohesion, separation, R-squared, etc.), in our
results, the Silhouette Score was more natural to interpret [39].

Figure 5 shows the tendency of the metric (y-axis) with dif-
ferent values of k (x-axis) for all datasets and algorithms across
the combinations of context and daily load profile aggregation
functions (colored curves). For the BDG dataset, we see that

Figure 7: PSU distribution in each cluster for the BDG dataset with a weekday
context and average as aggregation function and K-means with k = 3. The
number in each color section represents the overall membership percentage of
buildings in such PSU.

all contexts but the ones including weekend perform relatively
similar, with the highest achieved at k = 3. Conversely, for the
DGS dataset, all contexts follow the same tendency and simi-
lar variations, with K-Shape showing more variations. In this
case, although k = 2 has the highest value, at k = 4 we notice
the elbow of such metric, thus indicating the scores stabiliza-
tion. In terms of choosing the algorithm for the BDG dataset, a
more detailed analysis is reflected in Figure 6, where the aver-
age Silhouette scores for both algorithms with their respective
setups are represented by the dashed red line and all the data
points’ Silhouette scores are sorted within their respective clus-
ter. From these plots, it can be argued that both average scores
for K-Means and Hierarchical Clustering, 0.57 and 0.56 respec-
tively, are so close that either can be chosen as the clustering al-
gorithm. However, Hierarchical Clustering results show some
instances within Cluster 0 with negative silhouette scores. As
stated in Section 2.6, this most likely indicates that those in-
stances are closer to instances in other clusters rather than in-
stances in their current cluster.

On the other hand, K-Means show all data points with posi-
tive silhouette scores, making it our selected algorithm for this
particular dataset. The selection for the DGS algorithm is more
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Figure 8: PSU distribution in each cluster for the DGS dataset with a weekday
context and average as aggregation function and K-means with k = 4. The
number in each color section represents the overall membership percentage of
buildings in such PSU.

straightforward since K-Means shows more consistent perfor-
mance and a clear elbow. While K-Shape is known to perform
well on time series data [37], the authors believe it does not per-
form as expected on these time series datasets because of the
aggregation functions that are smoothing details and intricacies
of the raw data, which are usually exploited by the algorithm.

Figure 7 shows the distribution of PSU in the resulting clus-
ter, as well as the percentage across all buildings in their PSU.
As per the final step in our methodology, the PSU label of each
cluster matches the label of the majority of its members. How-
ever, since the optimal number of clusters is different from the
total number of labels (i.e., three clusters versus five PSU la-
bels in the BDG dataset), some clusters will have a mixed PSU.
Cluster 0 can be treated as a Primary/Secondary Classroom
cluster. Conversely, Cluster 1 shows three predominant PSU
label, meaning the Cluster is a mix of College Laboratory, Col-
lege Classroom, and Office. Finally, Cluster 2 can be treated as
Dormitory. Figure 8 shows the same type of results for the DGS
dataset. In this scenario, Cluster 0 shows predominantly K-12
School and Office buildings. Cluster 1 also shows a mixture of
Fire Station and Other - Recreation. Cluster 2 clearly shows a
predominance of Other - Public Services buildings, and finally,
Cluster 3 is mostly represented by Library buildings.

4. Discussion

Based on our initial assumption that the PSU label of a
formed cluster will be the same PSU label of the majority of
buildings in the cluster, and looking at Figure 9 and 10, we find
that on average 74% and 67% of buildings in the BDG and DGS
dataset had a PSU that matches their profile consumption with
their peers, respectively. While we do not have information to

Figure 9: Summary of membership classification as one main cluster for each
PSU label for the BDG data set with with K-Means and k = 3. A horizontal 50%
line is represented by the red dashed line. The buildings falling outside the main
cluster for each of these buildings can be interpreted as having uncharacteristic
energy use behavior as compared to their peers, and could thus be labelled as
misfits.

Figure 10: memberships classification as one main cluster for each PSU: dataset
DGS, context and function weekday-average with K-Means and k = 4. A hori-
zontal 50% line is represented by the red dashed line. Once again, many of the
buildings can labelled as misfits.
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explain why other buildings are tallied in different clusters and
thus is split into multiple PSU groups, we do have a hint from
the figures as mentioned earlier. In Figure 7, we see that while
the predominant PSU’s in each cluster has a significantly high
percentage value, meaning the vast majority of those buildings
are present in such cluster, the buildings labeled Office are split
into two clusters. This split is not entirely skewed towards one
cluster, which could suggest that many buildings labeled as Of-
fice are actually mixed-used buildings with similar load profiles
(during weekdays, since that is the context we are analyzing) to
College Laboratories and College Classrooms (cluster 1) and
Primary/Secondary Classrooms (cluster 0). This situation can
be highlighted in Figure 4, where the first Office building (first
row in the Figure) was found to be in cluster 0 and the other
Office building (second row) in cluster 1, both showing differ-
ent consumption behaviors for the same PSU. We can argue
that similar situations happen in Figure 8. However, we have
to highlight that the distribution of human-made PSU in this
dataset is heavily imbalanced (Figure 3), making it hard to have
stronger claims on such results. With a more evenly distributed
number of buildings per label or by using undersampling tech-
niques, the distribution of PSU in each cluster showed in Figure
8 could vary significantly.

Overall, this analysis is focused on the identification of elec-
tricity use behavior that is divergent from the status quo as com-
pared to the peer group that the PSU label represents. Many of
the buildings in the two data sets exhibited load profile shapes
that indicated that they could require more detailed investiga-
tion through collection of sub-meter data or a walk-through
analysis to understand these discrepancies. Discussion of the
impact on of building benchmarking and simulation are most
relevant to this analysis.

4.1. Building energy performance benchmarking

The expansion of building performance benchmarking pro-
grams have made a positive impact on the quest to identify
energy savings opportunities in the built environment. The
methodologies of these platforms are built on data from energy
use surveys and utility disclosure programs. A significant part
of the benchmarking process is to assign a building to a peer
group based on the building attributes. This peer group makes
up the set of buildings that the targeted facility is being com-
pared to create a rating. If the building is performing poorly,
then it will fall at the bottom of that group. However, if the
building has atypical uses that are different from its peers, then
it might be misclassified as a poor performer. A classic example
of this type of behavior is when an office building has occupants
who work more hours than the usual office worker. The com-
pany leasing the building will often not discourage its employ-
ees form putting in extra hours if needed for the sake of energy
performance. These types of behaviors are often not formally
documented nor used as input for the benchmarking systems.
Our methodology could be used to shine some light onto those
atypical buildings and set the stage to a more in-depth under-
standing of why their performance is more unsatisfactory when
compared to their peers.

4.2. Building simulation assumptions

The importance of the mixed-use or misfit labels, alongside
their most representative load profile, is crucial for the devel-
opment and calibration of physics-based building performance
simulation models. A modeler would use this insight to choose
the space use classifiers and their associated inputs more care-
fully. These decisions can impact the speed of calibration, es-
pecially in the case of setting input parameters initial distribu-
tions for optimization techniques focused on calibration. The
mixed-use information can be further applied in benchmarking
scenarios and in detailed and grey-box modeling applications:
when operations schedules are needed, a real-world depiction
of the building, most of the time, a building with diverse loads
and uses, could lead to better convergence of measured and sim-
ulated data.

5. Conclusion

In this paper, we presented a modular methodology to as-
sess the validity of human-made primary-space-use (PSU) la-
bels and the uncharacteristic behavior in hourly load shape data
that can identify misfit buildings. This methodology allows a
plethora of comparisons and experiments to understand the best
homogeneous scenarios further to compare building load pro-
files and group them in an unsupervised way. The resulting
clusters are renamed based on the majority of buildings inside
it. The latter is the starting assumption the authors made for this
work since it is expected that buildings with similar consump-
tion patterns (load curves) follow the same primary usage type.
This method allowed us to find 74% and 67% of buildings with
the same label group together in the BDG and DGS dataset,
respectively. These results show that 26% and 33% of build-
ings in the datasets respectively can be treated as mixed-use or
PSU outliers with uncharacteristic behavior. It is this method-
ology and its results that these buildings can be pin-pointed to
the engineers and designers to further understanding their cir-
cumstances and drill down on what makes their electricity con-
sumption so different than those from their respective peers.

5.1. Limitations

One limitation of this work is further assessment as to why
the remaining buildings have this behavior. Hints, such as mix-
use type, can be found in Figures 7 and 8. Secondly, the identi-
fication of clusters relies entirely on the algorithm selected and
the different parts of the experiment parameters (context and
aggregation function). Thirdly, since holidays were not filtered
out or treated as weekends, they could have inserted noise if
they happen to fall on a weekday; future work will address this
scenario. Finally, it is possible that another unsupervised, or su-
pervised learning technique, achieves a better Silhouette Score
than the three algorithms presented here. Regardless, these al-
gorithms were chosen due to their extended use in the related
literature. On the other hand, the modularity of the method-
ology simplifies the testing and incorporation of new parame-
ters in any stage of the pipeline: temporal context, aggregation
function, clustering technique, and its different parameters.
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5.2. Reproducibility

This publication is fully reproducible using the codebase
from a Github repository1 and data publicly available from the
Building Data Genome Project2.
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