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Abstract—Chillers are energy-intensive, prone-to-faults components used for space cooling in
buildings. Data-driven Fault Detection and Diagnosis (DD-FDD) are widely used for chillers.
However, field personnel are often not confident in DD-FDD mainly because no explanation is
given for the results. EXplainable Artificial Intelligence (XAI) can help bridge this gap. We
investigate XAI-FDD’s role in building trust in DD-FDD. We examine use-cases for XAI-FDD on a
building in Singapore having 6 chillers.

CHILLER FAULT DIAGNOSIS Heating, ven-
tilation and air-conditioning (HVAC) systems are

used for space cooling in buildings and constitute
a significant proportion of the total energy con-
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sumption [1]. In countries with tropical climate
(e.g., Singapore), the energy consumption by
HVAC is around 60% of the total and is likely to
grow in the future. Within the HVAC system, the
chillers are the most energy-intensive components
and their reliable operation is essential for avoid-
ing energy losses, costly maintenance operations,
and reducing equipment downtime. Furthermore,
HVAC performance is closely linked to occupant
comfort and indoor air quality as well [2]. A
poorly maintained chiller could decrease occu-
pant well-being and create health issues (e.g., sick
building syndrome). To increase chiller reliability
and performance, fault-detection and diagnosis
(FDD) systems are used [3]. Existing FDD tech-
niques in chillers can be broadly classified as: i)
model-based, ii) data-driven, and iii) hybrid [4].
Model-based FDD uses physical laws to cap-
ture the component dynamics followed by signal
processing operations to determine the presence
of faults [5]. However, high-fidelity models are
difficult to obtain limiting their applicability. The
proliferation of the Internet of Things (IoT) and
edge computing is making it possible aggregating
and processing a large amount of data. Leveraging
these capabilities, data-driven techniques are be-
coming popular for chiller FDD design [6]. These
methods typically use raw-data collected from
chillers and use Machine Learning (ML) models
that perform prediction, classification, regression
and pattern recognition to identify faults. Data-
driven methods have found significant traction
in industry due to their short development time,
ability to leverage data and to handle diverse data
streams such as images and texts [7]. Hybrid ap-
proaches combine the two methods. They perform
well, but their complexity is high [8].

While data-driven FDD (DD-FDD) methods
are being embraced in industry, there is a prob-
lem brewing under the surface: field personnel
are not comfortable with a process that is not
entirely transparent. Indeed, data-driven models
are mostly “black box” and the user has no
visibility of the logic behind the decisions based
on these models [9]. Field technicians’ expertise
is precious and their involvement in the decision
process is necessary. Lack of transparency gen-
erates mistrust that may lead to the rejection of
data-driven technology in building management.

Since building system complexity is growing
rapidly, humans without the aid of analytic tools
would be facing an almost impossible task. DD-
FDD can be run real-time thus providing the
opportunity to optimize building operations and
in particular, to identify situations where failure
may occur, thus allowing preventive maintenance
to avoid down-times and inefficient behavior. This
situation clearly points to the need of a man-
machine collaboration that cannot be but based
on data-driven techniques that abandon opacity in
favor of more transparency: Explainable Artificial
Intelligence.

Explainable Artificial Intelligence
Without model explainability and inter-

pretability, it is hard to engage field personnel and
other stakeholders in the decision-making process
including proactive maintenance schedules. Sev-
eral approaches have been proposed for studying
model explainability; among them, eXplainable
AI (XAI) has emerged as a strong candidate [10],
[11]. XAI has received considerable interest in
medicine [12], industrial automation [13], and
buildings [14], [15], among others. We believe
that XAI can play a fundamental role in chiller
FDD allowing to overcome model opaqueness
and gaining field personnel’s trust.

In general, XAI is an AI framework where the
rationale/business logic of a model is explained
in user-centric terms. This logic helps model
transparency by providing records on factors and
associations with a given prediction. However,
as the model complexity grows the technical
challenge of explaining AI model’s decision re-
main severe, yielding the so called interpretability
problem [16]. There are several approaches that
attempt at making ML models and algorithms un-
derstand the context and the environment better,
and build explanatory models about their own
behavior. To underline the importance of this
work, the third-gen AI DARPA program is fo-
cused on XAI. In this program, the available XAI
approaches are broadly classified as follows [17]:

(i) Deep-explanation where the objective is to
learn explainable structures (e.g., layer-wise
relevance propagation);

(ii) Interpretable models where the objective is to
learn more structured and interpretable causal
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models that could be applied to statistical
models (e.g., Markov chains);

(iii) Model induction where the objective is to infer
an interpretable model from a black box one.
These models aim to explain the user the AI
model’s rationale in the close vicinity of a data-
instance (local interpretability).

A central role in XAI is played by the
Local Interpretable Model-agnostic Explanations
(LIME) [18] tool that provides explanations on
a single data-instance without depending on spe-
cific ML models. More precisely, the explanation
generated by LIME for data instance x is defined
as:

explanation(x) = arg min
g∈G

L(f, g, πx) + Ω(g)

(1)
where f() is the original model, g() is the local
explanation for instance x that minimizes the loss
function L that measures the fidelity between f()
and g(), while keeping the model complexity
ω(g) low. πx∗ denotes a neighborhood of x∗
in which approximation is sought. g() belongs
to a class of interpretable models, G, such as
linear models or decision trees [18]. LIME is an
example of sparse explainer that is suitable for
interpreting machine learning models with a large
number of predictors. The important idea behind
LIME is to train a local surrogate, interpretable
model that approximates the predictions of the
underlying black-box model. Since LIME is a
readily available off-the-shelf tool, we decided to
use it in our experiments.

XAI-FDD Systems for Chillers
The LIME-based XAI augments DD-FDD

methods by deriving explainable approximations
of the behavior of the DD-FDD methods around
specific data instances. The XAI-FDD schematic
is shown in Figure 1. The XAI-FDD workflow
starts with collecting labeled data on chiller faults
that are stored to a database. Then, the rules
for identifying fault conditions are defined and
a fault code protocol is established whose syntax
has four components: i) fault- level (component
or system level), ii) location (e.g., condenser),
iii) condition (low/high), and iv) tags (the phe-
nomena that are responsible for the fault). The
fault influence on the system (e.g., EN- denotes
energy, EFF - efficiency) is also used as fault
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Figure 1: Schematic of XAI-FDD for chillers

characterization in addition to the previous four
components.

Using the fault-protocol and syntax, a fault-
rule is generated that performs data-profiling for
each fault that is entered in the fault-table. This
table contains data required for understanding
faults, rules, conditions, and other aspects specific
to faults. For example, Low Chiller Efficiency is
defined with CH LOW EFF as fault code, data
points required are: chiller flow, chiller supply
and return water temperature, chiller COP, KW
consumption, outside air temperature, chiller sta-
tus (ON/OFF), % full load ampere, and outside
air temperature. The rule that could be used to
detect the fault is KW/RT (kilowatt per refrigerant
tonnage) ≥ 0.60. These factors are detailed in the
fault-table.

Five different key performance indicators
(KPIs) are proposed for assessing chiller perfor-
mance: (i) Difference in temperature between the
supply and return water in the chiller (∆Tchiller),
(ii) Difference in temperature between the supply
and return water in the condenser (∆Tcondenser),
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(iii) Ratio of DeltaT = DeltaTchiller

∆Tcondenser
, (iv) Ap-

proach temperature of the cooling tower, (v) ratio
of kW

RT
, where kW denotes the electric power con-

sumed by the chiller, RT the refrigerant tonnage
and approach temperature is defined as the differ-
ence between leaving chilled water temperature
and saturated refrigerant evaporating temperature.

The data-driven model uses ML for per-
forming regression or classification to identify
faults. We use Extreme Gradient boosting (XG-
Boost) [19] that consists an ensemble of classifi-
cation and regression trees. Note that our LIME-
based XAI is model agnostic, i.e., XAI just
explains the rationale of the model’s decision.
However, other XAI frameworks may not be
model agnostic. For these, model selection should
be considered as well.

XGBoost once trained on the labeled chiller
data, predicts whether a given sample represents
a healthy/faulty operating condition using multi-
class classification. The KPIs are computed in
real-time. Whenever they exceed a certain thresh-
old value (e.g., kW

RT
< 0.6), LIME explanations

are triggered. The data instance requiring expla-
nations is then transferred from the data-profiling
service to the XAI engine. Within the XAI engine,
there are two explainers for local samples: they
are the XAI fault instance and the XAI KPI
instance. These instances explain why a particular
sample was classified to be a fault and/or how the
KPIs are impacted by the fault. In addition, there
is an impact analyzer that has analytical models
to compute the fault impacts on performance.
The ”recommender” is a dialogue system that
displays variable thresholds causing a fault and
estimations on possible locations. Our XAI-based
FDD offers explanations to the field personnel,
with significant insights into the rationale used to
decide whether a state is a fault.

XAI advantages
Since our approach to XAI-FDD is based on

the application of ML FDD models, our analysis
is based on the value that XAI adds to DD-FDD.
We examine incipient and developing faults. We
will underline the advantages also in the use-case
section.

Incipient faults are more frequent and hard
to perceive from noise as their fault signatures
have lower amplitude and appear for shorter

time. XAI-FDD helps detecting incipient faults as
explanations are generated for a particular sam-
ple. By ”explaining” a single data-instance (local
explanations), XAI provides valuable information
to classify the data instance as incipient fault by
possibly resorting to human support. Hence, this
approach may detect faults earlier during their
occurrence than with DD-FDD methods that may
not trigger the correct classification.

As per developing faults, DD-FDD may pro-
vide a fault characterization in a form that is diffi-
cult for field engineers to understand. With XAI-
FDD the fault causes could be easily detected
through explanations. Moreover, thresholds based
on which the sample was classified as faults are
provided.

The additional information and explanation
provided by XAI may prevent a fault to reach
a degree of severity that causes disruption of
services and discomfort for building occupants.
Standard DD-FDD may not provide enough con-
fidence in the building managers and field person-
nel to trigger an appropriate maintenance action.

FDD Workflow and Stakeholder Actions
The workflow and stakeholder actions with

DD-FDD and XAI-FDD are shown in Figure2.
The fault-cycle with DD-FDD starts with stray
alarms: following the alarm, the field technician
resets the alarms and plans maintenance actions.
The next stage is declaration of a minor fault
that the field technician escalates to the field en-
gineer who advises maintenance/replacement ac-
tions. Based on these fault declarations, the field
engineer evolves maintenance plans. Finally, the
field technicians perform repairing/replacement
of parts based on the field engineer inputs. The
field engineer could escalate this to the building
owner or facility manager for costly replacements
and procurement. Consequently, most time in
DD-FDD workflow is spent on fault-detection,
performing root-cause analysis to escalate actions
to the next hierarchical level. This process may
take considerable time thus reducing the possi-
bility of catching faults early before they become
severe.

The XAI-based FDD workflow and actions
are shown on the top. The first phase is the
incipient fault declaration from individual data-
instances and this helps field technicians to under-
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Figure 2: Workflow and stakeholder actions

stand the fault causes that could be used to plan
simple maintenance operations. A minor fault
declaration happens well-ahead in the fault cycle
and this triggers corrective actions through pro-
active maintenance schedules. Severe faults are
almost prevented in case of XAI-FDD methods as
fault causes are examined at the incipient stage.
Consequently, significant amount of time in XAI-
FDD is spent on impacts assessment and severe
fault prevention, key aspects to eliminate costly
maintenance operations/repairs. In addition, XAI-
FDD provides options to perform impact assess-
ment and could also offer recommendations for
repairing certain faults.

Use-cases of XAI-FDD
This section demonstrates the value added of

XAI-FDD with respect to pure DD-FDD. For our
experiments, we collected data from a building in
Singapore having 6 chillers of different ratings
(650RT, 650RT, 200 RT,380RT, and 600 RT).
Chiller fault data were collected from June 1,

2018 to Jan 1, 2020. The system faults, the
fault-logs and maintenance logs were used to
decorate the faults with the time-stamped data.
The following use-cases are considered:

(i) Incipient faults: scaling in condenser fins;
(ii) Sensor errors: identify sensor errors that are

caused by pulsations in flow;
(iii) False positive: a faulty condition sample iden-

tified as healthy by DD-FDD but overruled by
XAI-FDD.

These use-cases are selected for illustrative
purpose only. An exhaustive discussion on use-
cases is outside the scope of the paper. However,
our XAI methodology could be applied to any
type of faults foreseen in a chiller system. In the
Figures below, explanations are obtained using
the XAI engine, while the prediction probabilities
provided as percentages in the plot, are derived
using XGBoost.
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Incipient Fault Detection
This use-case addresses incipient fault detec-

tion using XAI. The incipient faults are intermit-
tent and appear for a short time; consequently, the
signals are hard to perceive. XAI could be used to
detect incipient faults from analysis of explana-
tions time history. Explanations on two different
samples within a short time-frame of 25 min
are shown in Figure 3(a), and (b), respectively.
The incipient fault analyzed here is caused by
the beginning of condenser fouling. In Figure 3(a)
and (b), the red bars show possible fault causes
along with the threshold values of the variables
that indicates the likelihood that a fault is indeed
present due to this cause and the blue bars are
associated to potential fault causes that are still
in the range of normal behavior. The length of
the bars also points to the weighted contributions
of the variables towards declaring a particular
sample to be a fault or healthy condition. At this
time instant, CDW DT, a key KPI, is below the
limit of normal behavior while the chiller water
temperature difference is within the limits of
normal behavior. Considering these values, XAI
interprets that with high probability, the chiller
to be healthy (82.6%). Figure 3 (b) refers to the
values of the KPIs after 25 minutes. Here, even
though the chiller flow is still high (> 2.49),
the fault probability is increased dramatically to
99.8% because in addition to CDW DT being
below threshold, the difference between the con-
denser supply water and return water temperature
has decreased significantly, a sign of a condenser
fault. The field engineers can then declare the
real presence of the fault after examining the XAI
report and take appropriate actions.

Sensor Faults
Sensor faults are common but difficult to catch

at individual samples. In this use-case, the sensor
values of the chiller return water CHW FLOW
are incorrect due to sensor calibration malfunc-
tioning. In general, the sensor reading in Figure 4
(CHW FLOW ≤ 0.11) indicates a pump fault or
severe pulsation in the flow. This condition raises
an alarm in the Building Management System
requiring the field personnel to either reset the
sensor in case they decide that it was a false
alarm, or do a site visit at the pump location.
However, their decision is based on experience

CDW_DT <= 0.51
CHW_DT <= 1.93

23.92 < CDW_SWT <= 25.66
CHW_SWT > 10.76
CDW_FLOW > 0.15

OAT <= 27.55
CHW_RWT > 13.12

24.66 < CDW_RWT <= 26.66
CDW_RT > 0.00
CHW_RT > 0.00

CHW_FLOW > 0.13

(a) Incipient state

Normal (82.6%)
Fault (17.4%)

CDW_DT <= 0.51
CHW_DT > 2.49

CHW_SWT > 10.76
CDW_RWT > 26.66

OAT > 29.92
CDW_SWT > 25.66
CHW_FLOW > 0.13
CDW_FLOW > 0.15

CHW_RT > 0.00
CDW_RT > 0.00

CHW_RWT > 13.12

(b) Severe fault

Normal (0.2%)
Fault (99.8%)

Figure 3: LIME explanation for incipient at (a)
starting state and (b) incipient fault state

since they do not have a complete explanation of
the faulty behavior.

XAI can come to the rescue in this situation
as shown in Figure 4. The sample is declared
a healthy sample, but with an anomaly, i.e., the
difference between the chiller supply and return
water temperature (CHW DT ≥ 2.49). On the
other hand, chiller RT (CHW RT), chiller sup-
ply water temperature (CHW SWT), and chiller
return water temperature (CHW RWT) all are
typical of a healthy condition. Presented with
these explanations, the field personnel may con-
clude that a sensor fault has occurred and take
appropriate actions before severe damage to the
sensing system develops.

False Positives
In this use-case, the sample considered in

Figure 5 has been identified by DD-FDD a faulty
operating state given that the condenser supply
and return water difference is very small, and that
the condenser return-water temperature is very
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CHW_DT > 2.49
CDW_DT > 1.32
CDW_RT > 0.00

CHW_RWT <= 12.26
CDW_RWT > 26.66

CHW_RT > 0.00
CHW_FLOW <= 0.11

CHW_SWT <= 9.82
CDW_FLOW > 0.15

OAT > 29.92
CDW_SWT > 25.66

Normal (100.0%)
Fault (0.0%)

Figure 4: LIME explanation for sensor fault.

low pointing to a fault in the condenser or cooling
tower.

CDW_DT <= 0.51
CHW_DT <= 1.93

CDW_RT > 0.00
CHW_FLOW > 0.13

24.66 < CDW_RWT <= 26.66
CHW_SWT > 10.76

CHW_RT > 0.00
23.92 < CDW_SWT <= 25.66

CHW_RWT > 13.12
CDW_FLOW > 0.15

OAT <= 27.55
Normal (82.6%)
Fault (17.4%)

Figure 5: LIME explanation for false positive.

However, XGBoost classified it as a healthy
condition with high confidence (82.6%) since the
chiller temperature difference is in the normal
operation range. XAI-FDD triggered a complete
explanation on the KPI being violated and the
other conditions that are within limits presenting
the field personnel a rich set of information that
can be used to decide whether the case is a false
alarm.

Inputs to Field Personnel
In the use-cases above, the correctness of the

recommendations of DD-FDD on the presence
or absence of faults is difficult to ascertain for
the field personnel. In particular, incipient faults
are not detectable without human inspection dis-
mantling the condenser. We showed in use-case
(i), XAI-FDD provides explanations that can be

easily understood by the field personnel to take
actions. Similarly, in use-case (ii), we showed
that a sensor error is very hard to capture. This
type of faults can generate continuous alarms that
can propagate to other parts of the system. XAI-
FDD can provide enough explanations to iden-
tify these faults where other methods would not
offer the appropriate information. False alarms
are a major problem with DD-FDD; however,
use-case (iii) shows that using XAI-FDD, the
field personnel could understand whether a false
alarm has been triggered. We postulate that XAI-
FDD may become the user interface of choice for
field personnel in lieu of a Building Management
System as it is today because of the wealth of
information that can be used to aid maintenance
planning as well as troubleshooting.

CONCLUSIONS AND FUTURE
DIRECTIONS

A workflow for the development of eXplain-
able Artificial Intelligence-based fault detection
and diagnosis system (XAI-FDD) for chillers was
proposed. XAI-FDD reduces fault-detection time,
performing root-cause analysis, and helps plan-
ning maintenance operations. This reduces actual
faults and improves the accuracy of fault-impact
assessment. For building operations, XAI-FDD
helps increasing the field personnel trust on FDD
methods. Furthermore, XAI-FDD could be used
as the user interface of choice for field person-
nel to troubleshoot faults, detect incipient faults,
and plan maintenance operations. The benefits of
XAI-FDD were illustrated on a high-performance
building through a number of use-cases. The
results demonstrate the value proposition and the
ability of the system to reduce the digital divide
between field personnel and the FDD systems.
The XAI-FDD framework can be extended to
renewable energy sources, air-handling units, and
other energy components in a building. Future
work will include XAI-FDD implementation on
edge devices and the study of how to optimize the
use of XAI-FDD by field engineers/technicians.
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