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Abstract

Building energy use benchmarking is the process of measuring the energy
performance of buildings, relative to their peer group, for creating awareness
and identifying energy-saving opportunities. In this paper, we present the
design and implementation of BEEM, a data-driven energy use benchmark-
ing system for buildings in Singapore. The peer groups for comparison are
established using a public energy disclosure data set. We use an ensemble
tree algorithm for accurately modeling building energy use and for identify-
ing the most influential factors. Our models reduce the prediction error from
24.39% to 6.04%, on average, when compared to the baseline linear regression
models, which was used in the previous energy efficiency labeling program
in Singapore, and outperforms ten other recent models. Using the prototype
implementation of BEEM, we benchmarked three building types, office (290),
hotel (203), and retail (125) and compared their rating. The code repository
and the accompanying data set are released as an open-source repository for
the community use.
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1. Introduction

Commercial buildings account for approximately one-third of global en-
ergy consumption and greenhouse gas emissions. Several government agen-
cies and policymakers have started to implement energy benchmarking pro-
grams as one of the approaches for improving building energy efficiency.
Benchmarking is the process of measuring the energy performance of a build-
ing with an established peer group. It helps in creating awareness, identi-
fying energy-saving opportunities, and prioritizing energy management ac-
tion plans. Realizing the potential of energy benchmarking, cities worldwide
started to benchmark their building stock and reported 3%–8% reductions
in energy consumption [1].

Singapore is a tropical city-state country where air-conditioning is re-
quired through out the year due to the tropical climate. As part of the
Green Building Masterplan [2], Singapore has implemented several programs
and measures toward reducing the energy footprint of its building stock. The
Building and Construction Authority (BCA) has introduced the Green Mark
scheme [3], a point-based rating system similar to LEED [4], that assesses
the environmental sustainability levels of buildings and assign grades. The
BCA also benchmarks the country’s building stock using a simple Energy
Performance Indicator (EPI) called Energy Use Intensity (EUI).

1.1. Previous work in data-driven benchmarking methods

Every building is different in terms of its physical and operational char-
acteristics, such as size, age, geometry, occupancy, schedule, and appliance
usage. Building’s energy use is influenced by these multitudes of building
attributes and their interactions in a complex way. In addition to this, me-
teorological conditions, such as air temperature and relative humidity, also
affect energy usage significantly. Hence, it is essential to normalize the build-
ing energy usage for all influential factors to make fair comparisons between
buildings. Many approaches have been proposed in the literature for nor-
malizing building energy usage. EUI is a commonly used measure which is
expressed as energy usage per unit area, e.g. kWh/m2. It is easy to com-
pute and interpret EUI and it has been used in many benchmarking studies.
However, EUI is an unfair metric because it overlooks other influential factors
occupancy, operational hours, and other building attributes. There are other
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metrics that are specific to different building types such as energy usage per
worker for offices and energy usage per bed for hotels. However, all these
metrics have similar limitations as EUI.

In response to the limitations of EUI, data-driven predictive models have
been adopted. Unlike EUI, these predictive models can account for multiple
influential factors thus enables a fair benchmarking system. Multiple Linear
Regression (MLR) models have been widely used in several benchmarking
systems. This include the Energy Star system for the USA and Canada, Sin-
gapore [5, 6], China [7, 8], South Korea [9, 10], and Taiwan [11]. MLR models
finds a linear fit between building attributes and energy use. The primary
advantage of MLR models is the ease of interpretation of model coefficients
due to their linear and additive properties. However, such linear models are
inadequate in modeling the complex relationships between energy use and
building attributes, which is often non-linear. Due to this, MLR models
are often found to be a poor performer, as reported in many studies [12].
In order to develop a fair benchmarking system, the underlying energy use
prediction model needs to be highly accurate by reflecting all combination
of relationships and their interactions between the building attributes and
energy use.

The recent studies have adopted non-linear models for energy benchmark-
ing. These nonlinear models are proven to achieve better performance in
terms of prediction accuracy when compared with the linear models [12, 13].
However, due to their complex nature, it is difficult to interpret the pre-
dictions of these nonlinear models out of the box unlike the linear models,
e.g., which factors contributed to prediction results for each building. Fur-
thermore, unsupervised clustering methods have also been used to group the
buildings based on their similarity in energy use and building attributes [14].
Other contemporary benchmarking approaches have also used the econometric-
based Stochastic Frontier Analysis [15] and Data Envelopment Analysis [16].
However, these approaches are sensitive to outliers, and they also lack model
interpretability. A comparison data-driven energy benchmarking approaches
from around the world are shown in Table 1.
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Ref. Location Building types No. of buildings No. of attributes Algorithm Rating

[17] EnergyStar, USA 16 types 6 to 8 MLR Point (1-100)
[18] USA Office 242 5 MLR and RF
[7] China Office 88 10 MLR Point (1-100)
[9] South Korea Office 1,072 11 DT and ANOVA 5 Grades (A-E)
[11] Taiwan Hotel 45 6 MLR NA
[8] China Campus buildings 13 11 MLR 5 Grade (A-E)
[19] Hong Kong Office 30 5 MLR
[20] Taiwan School and universities 74 4 MLR
[21] Brazil Bank branches 1,890 MLR
[22] Taiwan Office 47 DEA Point (1-100)
[23] Ireland Primary school Energy Plus 7 Grades (A-G)
[24] Greece School 320 Fuzzy clustering 5 Grades (A-E)
[25] Hawaii Office and classrooms 60 10 ANN
[26] UK School 7,700 23 ANN
[27] Greece Hotel 90 k-means 5 Grades
[28] Italy Healthcare center 100 11 LMEM and CART
[6] Singapore Hotel 29 3 MLR Point (1-100)
[5] Singapore Office

Table 1: Summary of data-driven energy benchmarking methods globally
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1.2. Need for a holistic energy benchmarking system for Singapore
Despite initiatives in other contexts, Singapore has not had a system-

atic, active benchmarking system for assessing the energy performance of
buildings for over ten years. There are limited energy benchmarking studies
specific to the Singapore context. More than a decade ago, a benchmarking
approach for office buildings was presented in [29, 5]. After normalizing en-
ergy usage using regression analysis, buildings whose energy efficiency falls
within the nation’s top 25% are considered as the most efficient buildings.
A subset of these buildings that meet specific physical and occupancy crite-
ria was awarded Energy Smart Office label. In another study [6], Singapore
hotels were benchmarked using the same approach. Both the studies have
used linear regression models on a data set of fewer than 100 buildings for
each building type. More recent research is focused on identifying key factors
influencing the energy usage in 56 air-conditioned office buildings using clus-
tering method [30]. While there are sophisticated benchmarking systems in
other countries, such as the ENERGY STAR Portfolio Manager [17] for the
USA and Canada, they may not be directly applicable to Singapore’s tropical
climate and vast differences in the energy and appliance usage patterns. For
example, decentralized split air-conditioning systems are common, and they
are required around the year in Singapore buildings.

In this paper, we present BEEM, a data-driven building energy bench-
marking system for Singapore. BEEM consists of four parts: (1) peer groups
are established based on building type (e.g., office and retail), and data are
extensively cleaned for further refining them, (2) highly accurate prediction
models are developed, using the CatBoost [31] algorithm, for modeling peer
group’s energy usage based on various building attributes, (3) the relative
energy performance level of each building is calculated and mapped to a five-
point-scale letter grade using an univariate clustering algorithm for ease of
understanding, and (4) finally, the visual explanation for individual model
predictions is presented by leveraging recent Explainable Artificial Intelli-
gence approaches.

In addition to the structure outlined, we also compare the performance of
the prediction model used in our system to a linear regression model that has
been used in existing benchmarking systems, including Energy Star and a
former Singaporean labeling system [5, 6] and various state of the art models.
Our models achieve significant improvement over baseline and reduce error
from 24.39% to 6.04%, on average.

The major contributions of this work are:
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Figure 1: An overview of BEEM benchmarking system for Singapore buildings

• The Data-driven Building Energy bEnchMarking (BEEM) system is de-
veloped as energy benchmarking approach for the Singapore buildings
that utilizes advanced modelling and context-specific features for the
Singapore context.

• BEEM is systematically assessed through the interactions of build-
ing attributes. This effort shows that models with interaction effects
achieve better accuracy than a baseline model with only main effects.

• A reproducible code repository and the accompanying dataset is re-
leased as an open source for the community use and deployment.

This paper is organized as follows. In Section 2, the proposed BEEM
benchmarking system is outlined in detail in the context of application to a
group of buildings in the Singapore context. Section 3 outlined the results
of an implementation on a sample data set of buildings and discusses the
strengths and drawbacks of the approach. Section 3 outlines a comparison
of the proposed method as compared to other building benchmarking systems
in the built environment and discusses the advantages of machine learning
explainability. Finally, in Section 4 there is an overview of limitations, future
work, and conclusions for the BEEM system.

2. Methodology

The methodology developed for the BEEM system builds upon previous
work focused on the context of North America [32]. This work focused on the
development of a novel modeling and explainable machine learning workflow
to build upon the EnergyStar rating system. In comparison with [32], the
proposed BEEM system uses a more accurate and robust gradient boosting
model called CatBoost (See Section 2.2.1). This model is combined with a
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Table 2: List of building attributes available from the BCA 2017 data set

S.No Variable name Description

1 AirconFA Total air-conditioned floor area (m2)
2 NonAirconFA Total non air-conditioned floor area (m2)
3 Age Age of the building
4 IsPublic Is public sector building? (Yes/No)
5 Occupancy Average monthly occupancy rate (%)
6 AirconType Type of air-conditioning system such as:

Water-cooled chilled water plant
Air-cooled chilled water plant
District cooling plant
Split units or unitary systems

7 AirconAge Age of the air-conditioning system
8 AirconEff Air-conditioning system efficiency (kW/RT )
9 LED LED light usage (%)

10 Rooms Number of rooms (only for hotels)

novel model agnostic XAI technique called LIME [33] that provides grade
explanation to each building. Both these features were not studied together,
to the best of our knowledge, in the context of energy benchmarking, espe-
cially to the Singaporean buildings. Furthermore, we also present the design
and implementation of an end-to-end benchmarking system including an user
interface application. This section outlines the BEEM methodology in four
steps: (1) data preparation, (2) model development, (3) grading, and (4)
explanation of grade. An overview of this process is shown in Figure 1.

2.1. Building peer group data preparation

The first phase of the method involves defining the peer group and per-
forming data cleaning. A peer group is a group of buildings with similar
operational characteristics, for example, office or hotel. We use energy dis-
closure data set released by the Building and Construction Authority (BCA)
for the year 2017 for defining peer group samples [34]. BCA publishes the
Building Energy Benchmarking Report (BEBR) annually since 2014, to mon-
itor the building energy performance of Singapore’s building stock. Under the
Building Control Act, building owners have been required to submit build-
ing related information and energy consumption data to BCA on an annual
basis since 2013. The information thus collected was analysed to establish
the national building energy benchmarks for Singapore’s built environment.
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Table 3: List of analytical filters applied during the data cleaning process.

Building type Attribute Filters (acceptable range)

Office GFA Between 1000 and 80,000 m2

EUI Less than 500 kWh/m2/year
ChillerType Not using Water Cooled Packaged Unit
Age Less than 100 years

Hotel GFA Between 100 and 60,000 m2

EUI Less than 750 kWh/m2/year
ChillerType Not using Water Cooled Packaged Unit
Age Less than 100 years
Rooms Less than 600 rooms

Retail GFA Between 1000 and 80,000 m2

EUI Less than 1,000 kWh/m2/year
ChillerType Not using Water Cooled Packaged Unit
Age Less than 100 years

This data set contains detailed building attributes and energy use infor-
mation of 1145 buildings. We split this data set into different groups based
on the building type. Though there are six building types in this data set, we
selected only office, hotel, and retail buildings. Other building types, such
as hospital, had very few samples or too many missing values in building at-
tributes. After selecting building samples, we carefully cleaned the building
attributes in each peer group. Specifically, we removed outliers and inconsis-
tent samples based on data distribution and statistical measures, similar to
the analytical filters in the Energy Star system [17]. The list of filters that
we applied during the data cleaning is summarized in Table 3.

We also created derived building attributes based on available data, such
as air-conditioned and non-air-conditioned floor area and age of the building
based on Temporary Occupation Permit/Certificate Of Statutory Comple-
tion. After cleaning, there are 290, 203, and 125 samples for office, hotel,
and retail buildings, respectively.

The list of building attributes used in this study and their description
are provided in Table 2. Further, the descriptive statistics of office buildings
after cleaning is shown in Table 4. The histogram of EUI values of all three
building types are shown in Figure 2. It is to be noted from Table 2 that
the most of the existing building use benchmarking systems also used only
the most significant building attributes (approximately 10) based on data
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Figure 2: Histograms of Energy Use Intensity of office, hotel, and retail buildings after
data cleaning.

availability. This is one of the limitations of data-driven energy benchmarking
as collecting complete list of factors is practically difficult and doing so also
will limit the usability of benchmarking.

Table 4: Descriptive statistics of the office buildings after data cleaning.

Attribute Mean STD Min 25% 50% 75% Max

AirconFA 13152.1 13565.9 0.0 2493.7 8838.0 18356.4 61153.0
NonAirconFA 3596.7 5073.4 0.0 455.0 1743.2 4503.6 32587.4
Age 24.1 16.7 1.0 15.0 21.0 31.0 118.0
Occupancy 89.7 15.1 5.0 85.0 95.0 100.0 100.0
ChillerAge 8.2 7.3 0.0 3.0 6.0 12.0 40.0
ChillerEff 0.8 0.2 0.5 0.6 0.7 0.9 1.6
LED 18.3 28.3 0.0 0.0 2.0 25.0 100.0

2.2. Benchmarking model development

After establishing peer group buildings for each building type, the next
step is model development. In this step, the relationship between energy use
and available building attributes of each peer group are fit into a model. This
model will be used to get the estimated energy usage of a new building that
needs to be benchmark. The key priority in this step is to find the model that
is the most accurate in predicting the energy use of the building based on its
attributes in order to ensure a fair comparison of buildings. We use all the
available building attributes, as listed in Table 2, as the predictors of total
energy usage (kWh). It is important to note that we use total energy usage
as the dependent variable, instead of using EUI, because we approach also

9



provides explanation on which attributes influence the grades on individual
buildings (See Sections 3.3 and 3.4).

2.2.1. Gradient boosting and CatBoost model

The primary model that is implemented in the BEEM system is Cat-
Boost [31]. CatBoost is an efficient implementation of gradient boosting
based on decision trees. We choose CatBoost model because it offers several
advantages over other modelling techniques. Firstly, CatBoost models are
more accurate and perform better than many contemporary non-linear meth-
ods such as XGBoost, LigtGBM, and deep learning techniques [31]. It was
also included in many of the solutions of the ASHRAE Great Energy Predic-
tor III competition held in 2019 [35]. Secondly, it uses symmetric or oblivious
decision trees as the base predictor. This can reduce over-fitting thus more
generalizable model. Moreover, the underlying decision trees are suitable
for capturing higher-order feature interactions inherently, e.g., what is the
combined effect of gross floor area and occupancy on energy use? Thirdly,
CatBoost can handle both numerical and categorical data inherently. Since
many building attributes in our peer-group dataset are categorical in na-
ture, it is easy to include those attributes into the model, instead of using
an explicit one-hot encoding technique. Catboost can also handle missing
data inherently. These unique features also helps in model interpretation
as to understand the significance of each building attribute on energy use.
Finally, CatBoost is suitable for small datasets and works faster unlike the
deep learning based models that require huge amount of training data and
computing resources.

Let’s consider the training dataset D = {(xk, yk)}k=1..n, where xk =
(x1k, . . . , x

m
k ) is a vector of m features and yk ∈ R is a target. The learning

task involves training a function F : Rm → R which minimizes the expected
loss function:

L(F ) := EL(y, F (x)) (1)

The gradient boosting procedure involves fitting a sequence of approxi-
mation functions F t : Rm → R, t = 0, 1, . . . sequentially. Each F t is obtained
from the previous approximation F t−1 and included into the a additive man-
ner to the final model:

F t = F t−1 + αht (2)
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Where, α is a step size. ht is the base predictor which is chosen from H,
a family of functions, to minimize the expected loss L:

ht = arg min
h∈H

L
(
F t−1 + h

)
= arg min

h∈H
EL
(
y, F t−1(x) + h(x)

)
(3)

This minimization problem is solved by taking a negative gradient step using
least-square approximation.

ht = arg min
h∈H

E
(
−gt(x, y)− h(x)

)2
(4)

A CatBoost algorithm is an efficient implementation of gradient boosting
based on oblivious decision trees. A oblivious decision or symmetric trees
are balanced thus less prone to over fitting and helps in faster prediction. A
decision tree is built recursively by splitting the features Rm into disjoint sets
until some splitting criteria is met. An example tree is shown in Figure 3. A
decision tree is formerly defined as:

h(x) =
J∑
j=1

bj1{x∈Rj} (5)

In addition, the CatBoost algorithm addresses two key limitations found
in existing gradient boosting techniques such as XGBoost. Firstly, it proposes
an ordered target statistics technique to handle categorical features efficiently.

A straight forward way

x̂ik =

∑n
j=11{xij=xik

}
· yj + ap∑n

j=11{xij=xik} + a
(6)

Where, i is feature index, n is the number of instances, x̂ik is the expected
target category, and a is the weight of p that is the prior which is usually set
by average value of the dataset. Secondly, it recognizes and addresses the
prediction shift problem which is caused due to target leakage. CatBoost ad-
dresses this issue by using a novel ordering boosting in which several random
permutation of samples are used simultaneously to reduce the variance and
each subsequent tree is built using unbiased samples from the previous trees.
More details about the working of this algorithm can be found in [31].
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Figure 3: An example symmetric decision tree of a CatBoost model. This tree has a depth of four. Each node contains the
condition based on a specific building attribute (shown as index) to branch to the next level.12



Table 5: List of CatBoost parameters tuned using grid search.

Parameter Description Range / Step

iterations The maximum number of trees 50 - 1000 / 50
depth Depth of the tree 2 - 10 / 1
learning rate Learning rate 0.01 - 0.1 / 0.01
l2 leaf reg Coefficient at the L2-regularization term 1 - 10 / 1

2.2.2. Tuning hyper-parameters and model selection

CatBoost offers several parameters that can be tuned to select an optimal
model. The grid search method is employed for selecting optimal parameter
values using a 10-fold cross-validation approach. The four most important
hyper-parameters chosen for turning are: (a) The maximum number of trees
(iterations), (b) Depth of individual decision trees (depth), (c) Learning rate
(learning rate) used to reduce th gradient steps which also affects the train-
ing time, and (d) The coefficient of cost function’s L2 regularization term
(l2 leaf reg). These hyper-parameter names and their corresponding search
range is given in Table 5. All other parameters of the model were to set to
their defaults.

2.3. Contemporary models

In addition to CatBoost, we also study and compare the performance of
contemporary data-driven prediction models that are used in recent energy
benchmarking studies [36, 32]. A brief explanation of those models are given
below and their performances are compared in Section 3.2.

2.3.1. Multiple linear regression and variants

Multiple linear regression models have been widely used in many energy
benchmarking studies. It fits linear approximation function between energy
use (dependent variable) and building attributes (independent variables or
predictors). An MLR is defined as:

Yi = β0 +

p∑
j=1

βjXi,j + εi, i = 1, 2, ..., n (7)

Here, Yi is the dependent variable, β0 is model’s offset term, Xi,∗ are
a vector of p independent variables, βj are weights or coefficients of the
predictor variables, n is the total number of examples, and εi is the residual
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or error term. The weights β∗ are estimated using Ordinary Least Squares
(OLS) [37]. The OLS method estimate the coefficients or weights for each
predictor by minimizing a cost function. There are several variants of MLR
models, such as ridge and lasso regression, to overcome the bias-variance
problem in MLR models. In general, a regularization term will be added to
the cost function.

In ridge regression, a penalty term, also called as L2-regularization, is
included to the model that penalizes sum of squared coefficients of the pre-
dictors. The ridge regression model is defined as:

β̂ridge = argmin
β

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

β2
j (8)

Where, λ > 0 is the complexity parameter to control the penalty. When
λ = 0, the model is similar to the OLS, whereas a larger λ lead to high
penalty to the coefficients. This helps reduce the model’s complexity and
multicollinearity.

Whereas in lasso regression, or Least Absolute Shrinkage and Selection
Operator, a penalty term, also called as L1-regularization is included to the
model that penalizes sum of squared coefficients of the predictors. The lasso
regression model is defined as:

β̂lasso = argmin
β

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

(9)

Elastic Net is also variant of MLR in which the penalties of Ridge and
Lasso regression are combined to get benefits of both. It is defined as:

λ

p∑
j=1

(
αβ2

j + (1− α) |βj|
)

(10)

Where, α is the controlling parameter to decide between ridge (α = 0) and
lasso (α = 1) regression.

2.3.2. Ensemble models

In recent year, ensemble learning techniques gained wide acceptance due
to their improved performance compared to the classical machine learning
models. The main idea of ensemble learning is to build a more accurate and
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generalized prediction model by combining the predictions of a collection of
base models. These base models are generally simple weak learners built on
a subset of the training samples. There are two ways to build and combine
the predictions of base models: Bagging and Boosting. In bagging, also
called as bootstrap aggregation, a homogeneous weak models are trained
independently (often in parallel to each other). The predictions of all these
models are averaged to make a final result. Bagging :

f̂bag(x) =
1

B

B∑
i=1

f̂ ∗i(x) (11)

Where, f̂ ∗i are the predictions from B bootstrap samples. Bagging helps
reduce the variance of the model though in. Whereas in boosting, homoge-
neous weak models are trained sequentially in an additive manner and their
predictions are combined by adding them. In this paper, three widely used
ensemble models are studied and their performances are compared with the
proposed CatBoost model. They are: (1) Random forest, (2) AdaBoost, and
(3) XGBoost. All these techniques use decision tree or a variant as its base
learner.

Random forest [38] is based on bagging with some modifications. A ran-
dom forest model with B trees is built by drawing Zi, i = 1, 2, ..., B bootstrap
samples each of size N from the training set. Then a random forest tree Ti
is grown for each bootstrap sample independently. For the regression prob-
lems, predictions from all random forest trees Ti are averaged to make the
final prediction for a new sample x.

f̂Brf (x) =
1

B

B∑
i=1

Ti(x) (12)

AdaBoost [39], as the name implies, is based on boosting technique. In
AdaBoost, base learners are trained on weighted versions of the training sam-
ples. Initially, the weight of each training sample (xi, yi) is set to wi = 1/N .
In the subsequent iterations, these weights are modified based on previous
model’s error, i.e., increase the weights of the samples that had high predic-
tion error and decrease the weights of those samples with low error. This
weight adjustment procedure forces the model to focus on those samples
with high error in each subsequent step. The final model will have weighted
collection of these base models that are trained in each step.
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XGBoost [40] is another widely used ensemble model based on boost-
ing. It uses the gradient decent based boosting to optimize the loss function
and uses both L1 and L2 regularization terms to prevent model overfitting.
An XGBoost model has a collection of Classification and Regression Trees
(CART) [41]. A CART model is similar to normal decision tree except that
leave nodes contain the real score. Similar to other boosting based mod-
els, the final prediction is made by summing the predictions of each CART
model.

There are other nonlinear machine learning models exist, such as Support
Vector Machine and Neural Networks, for energy use prediction. However,
those models are excluded in this study because they are often found to be
under performing than the ensemble models [42].

2.4. Grading

After selecting optimal models, the final step in benchmarking involves
grading buildings based on their energy performance levels relative to the
respective peer groups. The relative energy performance of a building, called
Energy Efficiency Ratio (EER), is calculated as:

EER =
Actual energy usage

Expected energy usage
(13)

Here, the expected energy usage is the model-predicted energy usage for
the building that is similar to the peer group samples. An EER value less
than 1 indicates that the building consumes less energy than the peer group,
whereas an amount more than 1 suggests the building consumes more energy
than the peer group. The EER values are calculated for each building. Next,
we split the sorted EER list into five disjoint groups using an univariate
clustering algorithm. The cluster boundaries are used to create a grade lookup
table with grades from A to E. We have chosen five grades in this work inline
with recent energy benchmarking systems [9, 8, 24].

2.5. Grade explanation with LIME

After assigning grades to each building based on their energy efficiency
ratio, the proposed BEEM system provides explanations of those grades, e.g.,
which factors make the building energy efficient or inefficient. In this work,
our CatBoost model is augmented with Explainable Artificial Intelligence
(XAI) techniques. Particularly, a model agnostic method called Local In-
terpretable Model-agnostic Explanations (LIME) [33] is used in the BEEM
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system. Unlike the MLR models, in which the coefficients denote the influ-
ence of each factor on an average on energy use of all samples, LIME can
provide explantation for individual predictions. With LIME in place, facil-
ity managers can receive the understand which factors are dominant and
influencing high or low energy use.

The explanation provided by LIME for data instance x is defined as:

explanation(x) = arg min
g∈G

L(f, g, πx) + Ω(g) (14)

where f() is the original model, g() is the local explanation for instance x that
minimizes the loss function L that measures the fidelity between f() and g(),
while keeping the model complexity ω(g) low. πx∗ denotes a neighborhood of
x∗ in which approximation is sought. g() belongs to a class of interpretable
models, G, such as linear models or decision trees [33].

LIME is an example of sparse explainer that is suitable for interpreting
machine learning models with a large number of predictors. The important
idea behind LIME is to train a local surrogate, interpretable model that
approximates the predictions of the underlying black-box model. Since LIME
is a readily available off-the-shelf tool, we decided to use it in our experiments.

3. Results

3.1. Model implementation and benchmarking grade calculation

We implemented the proposed benchmarking system and a web interface
in R and Shiny. We used the scikit-learn [43] for developing the baseline
prediction models and catboost.ai [44] for developing CatBoost models, and
for tuning hyper-parameters and cross-validation. We used the python-based
LIME library1 to explain which factors influence the energy usage in each
building. We also release the code repository and the accompanying dataset
in open source2 for community usage. Using our implementation, we bench-
marked all buildings in our public dataset. The predicted energy usage of
each building was calculated from the model trained on all peer group sam-
ples except the current one. Table 6 shows the final grade lookup table for
office, hotel and retail building types that are used in this study. In Figure 4,
we compare EER value range for different grades. Out of 290, 23 offices

1https://github.com/marcotcr/lime
2https://github.com/samy101/BEEM/
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Figure 4: The EER range for different grades in the grade lookup table for office buildings.
The X-axis denotes grade labels while the y-axis is Energy Efficiency Ratio. The dashed
vertical bar denotes the boundary between different grades.

Table 6: The grade lookup table for office, hotel and retail buildings.

Grade Office Hotel Retail

A < 0.52 < 0.82 < 0.64
B 0.53− 0.85 0.83− 1.06 0.64− 0.93
C 0.85− 1.14 1.07− 1.32 0.94− 1.12
D 1.15− 1.58 1.33− 1.76 1.12− 1.63
E > 1.58 > 1.76 > 1.63

were assigned with grade A. These offices are considered to be the most en-
ergy efficient because their EER values are much lower (< 0.52) than other
buildings in the peer group.

3.2. Comparison of model performance

It is essential to use an accurate model to develop a robust and fair bench-
marking system. The robustness and fairness of a benchmarking system lie
in the underlying predictive model’s accuracy. We implemented all MLR
and ensemble models, as described in the Section 2.2 for all three building
types using the same set of building attributes listed in Table 2. We use
Leave-One-Out Cross-Validation (LOOCV) procedure to validate the model
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Table 7: Comparison of symmetric Mean Absolute Percentage Error (%) between various
state of the art models and CatBoost.

Model Hotel Office Retail Average

CatBoost 7.21 10.50 4.93 7.55
RandomForest 18.34 18.84 21.65 19.61
Bagging 18.21 18.98 21.59 19.59
GradientBoosting 19.39 19.00 24.35 20.91
BayesianRidge 19.43 20.46 24.33 21.41
LassoLars 25.58 21.06 29.68 25.44
Ridge 25.77 21.06 29.63 25.49
Lasso 25.78 21.08 29.70 25.52
Linear 25.72 21.14 29.72 25.53
ElasticNet 25.96 21.19 30.42 25.86
AdaBoost 32.17 27.85 26.79 28.94

performance. LOOCV is a more robust approach because one model is de-
veloped and validated for each sample, using all other samples as training
set. We use a scale-independent measure called symmetric Mean Absolute
Percentage Error (SMAPE) to compare model performances. It is defined
as:

sMAPE =
100%

n

n∑
i=1

|Pi − Ai|
(|Ai|+ |Pi|)/2

(15)

Where, Ai and Pi are the actual and predicted values. We compare the
sMAPE of proposed CatBoost and other models for three building types
in Table 7. MLR models have also been used in earlier studies on bench-
marking office and hotel buildings in Singapore [5, 6]. We observed that
CatBoost models for all three buildings performed better than other models
by achieving lowest sMAPE of 7.55%.

3.3. Important building attributes

Next, we analyze how much impact each building attribute has on energy
usage in our CatBoost. The feature importance plot for all three build-
ing types are shown and compared in Figure 5. We can observe that air-
conditioned floor area (AirconFA) is the most dominant influencing attribute
on energy use followed by non air-conditioned floor area (NonAirconFA).
The combined floor area account for close to 80% influence of energy use.
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Figure 5: Feature importance using CatBoost models.

Moreover, it is interesting to note that the influence of floor area is high in
office building followed by hotel and then retail buildings. It is very common
that office building will have more air-conditioned space for workers than Ho-
tel and Retail. The next dominant building attribute is percentage of LED
lights usage followed by the age of the buildings. The type of chiller system
used is next important attribute that has a large contribution in the hotel
buildings. This is due to the fact that many hotels in Singapore different
air-conditioning system (split air-conditioning) compared to the office and
retail buildings. Moreover, the number of hotel rooms has a large impact
in hotel buildings. Finally, it is also interesting to note that the list most
dominant building attributes (AirconFA, NonAirconFA, LED, Age, and
ChillerType) are very common for all three building types.

3.4. Grade explanation

In addition to grade assignment, the proposed BEEM system also pro-
vides insights on which building attributes influence the energy use in indi-
vidual buildings. Note that the feature importance plots shown in Figure 5
are limited to providing only the overall importance of each building at-
tribute. Figure 6 shows the LIME explanation for an office building that
consumed lower energy (actual = 4572.8kWh) than the peer group (pre-
dicted = 4743.2kWh). The EER of this building is 0.96, and it gets a
B grade as per the grade lookup table. In Figure 6, the x-axis denotes
LIME values, and the y-axis refers to building attributes in decreasing or-
der of importance. The contribution of each building attribute on energy
use is shown as horizontal bars. The red color bars indicate negative contri-
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Figure 6: An example of LIME based explanation provided for a office building that
consumes less energy. The EER of this building is 0.96.

bution, whereas green bars indicate positive contribution. From Figure 6,
we can observe that this office has relatively lower air-conditioned floor
area (AirconFA < 2493.74kWh), new (ChillerAge <= 3) water-cooled
chilled water plant (ChillerType), moderate non air-conditioned floor area
(455kWh < NonAirconFA <= 1743.17kWh), and more LED lighting sys-
tems (LED > 25%). These factors contribute to lower the energy usage in
this building. We can also observe that other factors such as high occupancy
(95% < Occupancy <= 100%’) and medium building age (21 < Age <= 31)
contribute to high energy usage. Still, their combined contribution (all green
bars) is much less than the factors that lower the energy usage (all red bars).
It is to be noted the LIME-based grade explanation is provided for individ-
ual buildings (local explanation), unlike the global feature importance plot
as shown in Figure 5. This grade explanation chart is potentially helpful for
building managers, providing insights into understanding the factors respon-
sible for high or low energy usage.

3.5. Comparison with Energy Smart and Green Mark systems

The results of the BEEM development show that it is a viable option for
a Singapore-specific building energy benchmarking methodology that specif-
ically captures the relevant variables to rate buildings in this context. In this
section, we compare the application of BEEM to previous and existing build-
ing energy benchmarking methods from the Singapore context and discuss
the differences and impact on real-world implementation.
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Figure 7: Comparison of grade distribution between BEEM, Energy Smart and Green
Mark for the office buildings.

The two baseline building energy benchmarking systems that we will
compare BEEM to are Singapore’s previous Energy Smart [5] and the current
Green Mark [3] energy rating systems. Figure 7 illustrates a sankey diagram
of the comparisons of three systems. In the Energy Smart system, which is
similar to the Energy Star, top 25% of the energy efficient buildings are rated
as Energy Smart Offices. Whereas, Green Mark is a point based rating system
that assigns three labels, namely Platinum, Gold Plus and Gold, based on the
earned points corresponding to meeting predefined standard energy efficiency
measures. This comparison shows that BEEM is classifying buildings in a
more granular way as compared to Greenmark and EnergySmart. The rating
systems have a significant amount of overlap in terms of which levels good or
poor performing buildings are captured, but there are many exceptions.

4. Conclusion

We presented the design and implementation of BEEM, an energy use
benchmarking system for Singapore buildings. Our approach differs from
others by using nonlinear algorithms for accurately modeling building en-
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ergy usage and the visual explanation of factors affecting energy usage in an
individual building. There are some limitations in our approach and scope
for improvement. The BCA’s energy disclosure data set, used for establishing
the peer group, may not be the nationally representative building samples.
There is no documentation available on how BCA selected these buildings.
Though we have carefully filtered the samples for each peer group, further
refinement is required, using additional building characteristics, to make our
approach more generalizable. The evaluation of our system is limited to com-
paring the performance of our models to the baseline. Because it is difficult
to measure and compare the actual energy saving potential of our system
with others unless the system is deployed. This is the limitation of any new
benchmarking approach. Further, conducting a field study is a future work
to evaluate the effectiveness and usability of our visual explanation of grades.
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