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ABSTRACT
This paper presents an one-dimensional convolutional neural net-
work (1D-CNN) based fault detection and diagnosis system (FDD)
for identifying chiller faults. The 1D-CNN has parallel processing
capability against a sequential time-series models that are used
in the literature. The 1D-CNN chiller FDD capability is demon-
strated on two data sets: RP-1043 and a multi-story building in
Singapore. Our experimental results demonstrate the FDD capabili-
ties to identify chiller faults over existing methods. It is shown that
the proposed 1D-CNN model achieved superior performance, an
average F1 score of 99.48% and 94.62%, respectively, compared to
the contemporary data-driven FDD models.

CCS CONCEPTS
• Computer systems organization→ Sensor networks; • Com-
puting methodologies→Machine learning.
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1 INTRODUCTION
Commercial buildings fitted with heating, ventilation, and air condi-
tioning (HVAC) systems consume significant energy. Consequently,
reducing their operating costs assumes significance. While optimiz-
ing energy consumption in HVAC systems is exacerbated, main-
tenance costs towards equipment are often neglected [1]. More
importantly, chillers are not only costly equipment but consume
significant energy as well. However, energy efficiency and main-
tenance costs are competing objectives. Reducing maintenance
tasks reduces operating costs and increases energy consumption
by diminishing equipment performance and vice-versa. Therefore,
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striking the right maintenance schedules in chillers has assumed
significance in commercial buildings as never before [2]. In this
context, to detect chiller faults, fault detection and diagnosis (FDD)
systems are required to detect faults earlier and judiciously plan
maintenance operations.

Legacy building management systems (BMS) are reactive sys-
tems with little prediction capabilities (e.g., alarming and trending)
and are unsuitable for predicting faults and planning maintenance
tasks. A proactive fault detection system helps plan maintenance
operations to reduce downtime, component failures, and expensive
maintenance tasks. Nevertheless, implementing proactive fault de-
tection techniques requires: data-aggregation, knowledge creation
from raw data, predicting impending faults, and providing insights
to building operators and maintenance staff.

To this extend, model-based approaches depending on physics-
based and data-based–models have assumed significance [3]. Usu-
ally, physics-based models capture chiller or component behaviors
using mathematical equations. Although resilient, their scalabil-
ity is rather difficult for buildings with different operating condi-
tions. Nevertheless, with the advent of communication technologies,
data-aggregation capability has increased stupendously, favoring
data-driven models [4, 5]. Machine learning approaches such as:
support vector machines [6], least squares-SVM [7], self-adaptive
principal component analysis [8], linear discriminator analysis [9],
and ensemble learning techniques [10] have been used for per-
forming data-based fault detection. More recently, deep-learning
approaches have been proposed to improve the performance of the
fault detection models for chiller systems [11, 12]. The advantage of
deep-learning techniques is their ability to model complex patterns
without completely providing the manually extracted features. This
is important as discerning faults requires identifying key features
contributing to the faults and understanding their causes.

A key aspect in data-based FDD methods is the temporal de-
pendence of the raw data that reveal fault signatures lurking in
the data. Among deep-learning approaches, convolution neural
network has been known for image processing tasks. However, by
embedding causal behaviours within one dimensional convolution
neural network (1D-CNN) architecture, data ordering could be pre-
served [13]. Consequently, our contribution exploits the 1-D CNN
advantages in building the chiller FDD systems. We conducted two
case studies to evaluate the performance of the 1D-CNN model
using real data. Our experimental results showed that the proposed
1D-CNN model achieved superior performance, with an average F1
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Figure 1: Architecture of the 1D-CNN network for chiller fault detection.

Figure 2: Illustration of causal convolutions from
WaveNet [13].

score of 99.48% and 94.62%, respectively, compared to the contem-
porary data-driven FDD models. Furthermore, we also release the
reproducible code repository1.

2 METHODOLOGY
This section presents the details of the causal 1D-CNN model ar-
chitecture for chiller fault detection. A CNN is an extension of
traditional ANN with complex convolutional kernels or filters that
are sequentially applied to learn the meaningful patterns in the
dataset. One of the unique features of convolutional kernels is that
they can learn complex features, also called feature maps, and help
perform automatic feature extraction when the number of layers in
the model increases. While 2D convolutional kernels are widely ap-
plied in image analysis, 1D convolution kernels are applied to model
and identify the temporal patterns in time series data. Further, they
have parallel processing capability overcoming difficulties with
sequential models such as LSTM currently used for fault detection.

Since the chiller dataset consists of multiple time series repre-
senting the physical state of a component or sensor over time, it is
intuitive to apply causal 1D-CNN to them to model and isolate the
normal operations from faulty conditions. The architecture of the

1https://github.com/samy101/chiller-fdd-1dcnn

Table 1: List of chiller fault types and severity levels (L1 -
L4) from ASHRAE 1043-RP [14]. The percentages in each
column indicate the reduction/increase in the corresponding
faults and severity levels. For example, -10% for F1 indicates
reduced condenser water flow for severity level L1 and so on.

Fault code and description Fault severity levels
L1 L2 L3 L4

F1 - Reduced condenser water flow -10% -20% -30% -40%
F2 - Reduced evaporator water flow -10% -20% -30% -40%
F3 - Refrigerant Leak -10% -20% -30% -40%
F4 - Refrigerant Overcharge +10% +20% +30% +40%
F5 - Excess Oil +14% +32% +50% +68%
F6 - Condenser Fouling -12% -20% -30% -45%
F7 - Non-condensables in refrigerant 1% 2% 3% 5%

proposed 1D-CNN for chiller fault detection is shown in Figure 1.
Firstly, the chiller dataset is converted into a 1D format of fixed
time slices to feed them into the 1D-CNN. In this work, we apply
a fixed, overlapping time window (𝑤 ) to each chiller variable to
form the training samples. Thus, each training sample will have a
vector of𝑤 × 𝑛 data points where 𝑛 denotes the number of chiller
variables. The first causal 1D convolutional layer consists of 32 ker-
nels of size three that are applied in sequence to the input samples
and then transformed using 𝑟𝑒𝑙𝑢 activation units. Subsequently, to
capture the temporal patterns of different lengths, there are three
more 1D-CNN layers of sizes 32, 64, and 64, respectively. Note that
all four layers are based on causal convolutions (See Figure 2) to
ensure our model cannot violate the temporal order of the training
samples (inspired from WaveNet [13]). After applying a sequence
of 1D convolution filters, a 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 layer is used to randomly re-
set the input units to 0 to prevent over-fitting of the model. Next,
a 1𝐷𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔 layer is used to downsample the data points by
applying the maximum function to a spatial window of size 2. The
final layer is a dense or fully connected layer that performs the
final fault classification based on the features learned in the pre-
vious layers. The final output layer will output the prediction of
probability of each each fault class per sample input.

https://github.com/samy101/chiller-fdd-1dcnn
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Figure 3: Schematic of the chiller system with the location of
the injected faults (F1 to F7) used by ASHRAE 1043-RP [15].

3 DATASET
In this study, we use two datasets with real faults to validate and
compare the performance of the proposed 1D-CNN based fault
detection method with traditional approaches.

3.1 ASHRAE 1043-RP
This chiller FDD dataset is collected initially by ASHRAE project
number 1043-RP, a commonly used data sample [14]. In the 1043-RP
dataset, a 90-ton chiller system (See Figure 3) was used to collect
samples under normal and faulty conditions. Seven chiller faults
are captured in the dataset with four severity levels: L1-L4 (see,
Table 1). There are 65 chiller variables reported in the ASHRAE
document [14]. Approximately 14.4 hours of data, at 10-second
intervals, were collected for each severity level and fault type. In
addition, this dataset also contains data samples during normal
chiller operations. A subset of the dataset containing 5,191 normal
and 36,337 (7 × 5,191) faulty samples at each severity level are used
during model validation. All 65 variables were used as features after
normalizing them.

3.2 A 32-story office building
This chiller dataset is collected from an office building with 32
floors equipped with four chillers. Using the BMS, chiller variables
were recorded for data storage and retrieval. These include chiller
tonnage, condenser tonnage, chilled water flow, supply and return
water temperature of the chiller, approach temperature of the cool-
ing tower, etc. These variables are collected as time-stamped data
every 5-minute over seven months. Since the data is recorded from
a building management system, there are missing values and out-
liers in the data. We removed the missing values and outliers using
standard statistical and regression analysis.

The fault labels were generated from BMS alarms and validated
based on the chiller domain knowledge. Out of 79,979 samples, 3,508
(4.39%) were considered faulty samples. It is to be noted that the
assigned fault labels represent system-level faults or degradation,
unlike the specific faults injected in the ASHRAE 1043-RP. We
advocated this procedure because injecting true faults into the
chillers in real buildings is challenging and may be inconvenient to
the occupants.

Table 2: F1-score comparison of the proposed 1D-CNN and
seven contemporary models for four severity levels (L1-L4)
on the ASHRAE 1043-RP dataset. The proposed causal 1D-
CNN model achieved the highest average F1-score of 99.48%
across four severity levels.

Model name Fault severity levels AverageL1 L2 L3 L4

1D-CNN 99.60 99.62 98.74 99.96 99.48
SVC 87.81 94.22 97.15 98.41 94.40
LR 82.04 90.73 96.10 97.74 91.65
XGB 82.75 83.24 93.85 95.15 88.75
RF 74.80 81.78 90.50 95.38 85.61
DT 70.35 72.11 84.78 87.18 78.61
kNN 63.37 66.34 76.84 84.33 72.72
MLP 75.12 71.28 56.72 79.22 70.58

4 EXPERIMENTAL SETUP AND RESULTS
Evaluation Metrics: In this work, we have used precision, recall,
and F1 score to have a fair understanding of the distribution of
false positives and false negatives to evaluate the fault detection
performance. The formulas are:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(2)

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(3)

Baselinemodels:We compare the performance of the proposed
causal 1D-CNN performance with several existing machine learn-
ing models previously used in the literature [1, 4–7, 10]. These
include Decision Tree (DT), k-Nearest Neighbours (kNN), Logistic
Regression (LR), Multilayer Perceptron (MLP), Random Forest (RF),
Support Vector Machine (SVC), and XGBoost (XGB).

Experimental setup:Weuse a stratified five-fold cross-validation
strategy to validate the model performance robustly. In each fold,
80% of the total samples were used for training, and the remaining
20% samples were used for testing. The scores from all folds are
averaged to get the final score. There were four subsets, one per
severity level, in the ASHRAE dataset and another four subsets,
one per chiller, in the office building dataset. The five-fold cross-
validation is applied to each subset independently. All models were
implemented using Python 3 with standard libraries. The experi-
ment environment includes a laptop computer with a CPU of Intel
Core i7-8750h, a graphics card of NVIDIA GTX 1050Ti, 32GB RAM,
and a 512GB SSD hard disk.

The F1 score of all models on the ASHRAE 1043-RP dataset is
compared in Table 2. The causal 1D-CNN model achieved the high-
est average F1 score of 99.48%, across all four fault types followed
by SVC (94.40%). The MLP based model yielded the lowest perfor-
mance with an average F1 score of 70.58%. Similarly, the F1 score
of all models on the office building dataset is compared in Table 3.
We can observe that the proposed causal 1D-CNN model achieved
the highest average F1 score of 94.62% across all four chillers. This
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Table 3: Comparison of F1-score of the proposed causal 1D-
CNN with seven contemporary fault detection models for
four chillers on the multi-story office building dataset. The
proposed 1D-CNN model achieved the highest average F1-
score of 94.62% across all four chillers.

Model Chiller1 Chiller2 Chiller4 Chiller5 Average

1D-CNN 97.92 95.26 96.74 88.54 94.62
XGB 84.21 94.24 98.54 97.22 93.56
SVC 89.68 86.93 98.84 97.32 93.19
LR 90.38 87.39 98.84 95.94 93.14
MLP 91.21 92.17 93.36 93.04 92.44
RF 87.49 80.41 98.80 96.15 90.71
DT 86.77 78.64 99.04 97.18 90.41
kNN 83.88 79.82 99.02 95.89 89.65

is followed by XGBoost, which achieved an average F1 score of
93.56%. The KNN yielded the lowest performance with an average
F1 score of 89.65%. Additional comparisons of all models using var-
ious metrics are provided in the code repository. To conclude, the
proposed 1D-CNN model achieved superior performance across dif-
ferent fault types and chiller systems on both datasets. The higher
accuracy is attributed to the model’s capability to capture better
the temporal patterns of faulty and normal conditions in the given
chiller variables.

5 CONCLUSION AND FUTUREWORK
This paper presented a fault detection and diagnosis (FDD) method-
ology for chillers in commercial buildings that used data-driven
models against rule-based ones in existing works. The main contri-
bution is the causal one-dimensional convolution neural network
that achieved improved performance in identifying chiller faults on
two data sets with real faults. Further, exploiting the deep-learning
framework manual feature engineering is avoided. Extending to
explainability aspects is the future course of this investigation.
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