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ABSTRACT
Prediction of building energy consumption using machine learn-

ing models has been a focal point of research for decades. However,
some causes of forecast errors, particularly data quality, have not
been adequately addressed, which may affect the accuracy of fore-
casting models and subsequent energy management. To solve the
issue of data quality, a classifier that can automatically detect time
series anomalies is the goal that researchers have been pursuing.
Large-scale Energy Anomaly Detection (LEAD), a community com-
petition hosted on the Kaggle platform, was created for this purpose
as well as to provide a foundation for benchmarking solutions. In
this competition, 200 energy time series worldwide with labeled
anomalies were provided to train a classification model to predict
anomalies of another 206 unseen time series. The proposed win-
ning solution is a tree-based supervised learning anomaly classifier
with ROC-AUC score as high as 0.9866 on private leaderboard. This
article describes and analyzes in depth a variety of commonly em-
ployed techniques for improving the classification model. Among
these strategies, feature engineering requires the most effort and
dominates all other techniques; value-changing features that can
represent the level of time-series variation have a particularly pos-
itive impact. Besides, the classification accuracy of solutions in
the competition can serve as a benchmark for future research on
supervised learning of energy anomaly detection.
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1 INTRODUCTION
1.1 Data-driven anomaly detection in building

energy data
Althoughmachine learning has good potential for energy predic-

tion, in the real world, the unstable quality of building energy data
causes problems with prediction accuracy. In terms of the impact of
faults on energy management, improperly maintained, faulty and
degraded hardware, and improper operations waste an estimated
15 to 30 percent of energy consumption in commercial buildings
[6, 12]. Some studies have demonstrated that data quality can sig-
nificantly impact forecast accuracy, with the following negative
consequences. If anomalous data are not correctly identified and
effectively corrected, they will serve as a reference with false pre-
dictions, therefore harming the forecast’s accuracy and reliability
[9]. Because anomalous data can cause bias or failure to estimate
parameter values, anomaly detection is becoming more crucial for
energy models [13]. Studies have shown the benefits of anomaly
detection in terms of energy and related cost savings. For example,
it is possible that more than 10% of the energy produced in Europe
is lost every year due to non-technical losses and that billions of
dollars are lost every year as a result of energy theft [7, 15]. Besides,
distinguishing between behavioral consumption anomalies, fraud,
and unintentional consumption deviations has been identified as
a current research trend in order to provide accurate feedback to
end-users and energy providers [1, 5]. In terms of energy modeling,
the performance of machine learning methods and the predictabil-
ity of test data are also affected by abnormal energy-consumption
behavior [11]. All of these papers stress the importance of anom-
aly detection and its effects on building operations and energy
management.

To solve the aforementioned problems caused by faults in energy
data, there are several past studies on anomaly detection in built
environments. In terms of Heating, Ventilation, and Air Condition-
ing (HVAC) systems, since equipment signals and fault data can be
easily collected from the system, there are a handful of studies on
anomaly detection via supervised learning, such as chiller [8] and
Air Handling Unit (AHU) [14]. In contrast to the air conditioning
system, however, past research on detecting anomalies in energy
data is relatively rare. Typically, energy data consists only of me-
ter readings and weather data, whereas HVAC system data have
comparatively complete data points (e.g., temperature, air volume,
frequency, etc.). Another challenge is that energy data usually lacks
fault labels, whereas HVAC systems could provide sufficient faults
from signal data of equipment. All of these negative factors lead to
the difficulty of developing anomaly detection models for energy
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data. In light of the lack of labels, a study adopted an unsuper-
vised learning method that employed statistical pattern recognition
techniques to identify anomalies in energy data [2]. Additionally, a
regression-based supervised learning study uses the discrepancy
between the measurement and the predicted baseline to identify
anomalies [3]. However, in these energy-related studies, there is
still a lack of benchmark datasets with abnormal labels for in-depth
performance analysis and classification model comparison.

1.2 Introduction of Large-scale Energy
Anomaly Detection (LEAD) competition

LEAD was a community prediction competition hosted on the
Kaggle platform, which has been the lead platform in organizing
data science competitions in recent years. In this competition, par-
ticipants needed to develop accurate machine learning models to
identify instances of anomalous energy consumption (point anom-
alies) in hourly smart meter time series over the course of the year.
The competition data set is based on the energy data set used in
Great Energy Predictor III competition1 hosted by the ASHRAE
organization on the Kaggle platform [10]. The training dataset con-
tains hourly meter readings from 200 buildings throughout the
entire year, with labels of either abnormal (1) or normal (0) usage.
The objective of the competition is to use this training dataset to
develop a machine learning model for anomaly detection and then
predict anomalies in meter readings from another 206 buildings in
the test dataset.

The data used for this competition is a subset of a full dataset.
The full dataset consists of 1,413 smart meter data in a time series
manner with annotated labels spanning across a year. An introduc-
tory article for this dataset describes the progress of annotation and
offers several baseline anomaly detection models as performance
benchmarks for anomaly detection [4].

This dataset was annotated with two types of anomalies: (1)
point anomalies and (2) sequential or collective anomalies:

(1) Point anomaly:
A point anomaly is an instance of energy consumption that
is anomalous when compared to the entire time series or its
neighbors. It occurs randomly and sporadically rather than
continuously.

(2) Sequential or collective anomaly:
A sequential anomaly is a collection of consecutive abnormal
points that indicates an abnormal event of energy consump-
tion. It may occur once or on a regular basis.

The evaluation metric for this competition is the Area Under
Receiver Operating Characteristic Curve (AUC-ROC).

AUC-ROC score = The area under ROC Curve (1)

This paper outlines the winning solution to the competition.
There were 75 competitors with 600 submissions over the course of
three months this year. Participated competitors come from a vari-
ety of backgrounds, including data scientists, engineers, students,
etc. In addition, 14 shared notebooks containing solutions and visu-
alizations are accessible to the public. The competition was hosted

1https://www.kaggle.com/c/ashrae-energy-prediction

on the Kaggle platform as a community prediction competition
with no prize money available for the winners2.

2 OVERVIEW OF THEWINNING SOLUTION
Thewinning solution employs a framework of tree-basedmodels

that includes several tasks of data preprocessing, feature engineer-
ing, data downsampling, modeling, and post-processing (as shown
in Figure 1). As the aim of this competition is to detect anomalies,
data cleaning is not required during the data preprocessing stage.
Instead, only the imputation of missing data and feature normaliza-
tion were performed. Feature engineering took about half of the
work time, but it is the most significant factor for model perfor-
mance, which is also the most emphasized and crucial stage for
most data competitions. During the model building stage, the first
step was to solve the imbalance between normal and abnormal
data by downsampling. Next, classification models were developed
separately from several powerful and common tree-based models.
The final submission is established by the weighted average model
ensemble and post-processing.

Training data

Missing data 
imputation

Feature 
normalization

Preprocessing

Feature engineering

Data downsampling

LightGBM XGBoost

Models

Catboost HistGradient
Boosting

Weighted average ensemble

Postprocessing

Final submission
Figure 1: The overview of the proposed solution and different phases
in the working pipeline

2https://www.kaggle.com/competitions/energy-anomaly-detection
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2.1 Pre-processing
In most machine learning projects, data cleaning is crucial but

time-consuming and knowledge-intensive. However, since the goal
of this competition is to predict data anomalies, energy data anom-
alies are not cleaned up. During this phase, the only data processing
work is imputing missing data. Missing values (NaN) in the pro-
vided dataset only constitute 6.2%. Hence, these missing values were
replaced with the mean value for each time series. Other missing
data filling methods, such as forward and backward filling, have
also been tried, but the results were not as good as average-value
filling.

2.2 Feature engineering
The dataset provided in this competition contains up to 57

features, some of them were original features from energy data, and
some were obtained by feature engineering by the winning team
in GEPIII (see Table 1). Since these features are based on building
energy prediction models, they are not necessarily effective for
anomaly detection. In order to strengthen the identification of
anomaly detection, especially the degree of change of time series
values, value-change features were added to the model features.
The following subsections will elaborate on these value-change
features.

Table 1: Features for developing anomaly classification model
Category Descriptions of features
Energy use Meter readings from power meters.

Building meta
Basic information of buildings. (e.g., site_id,
building_id, primary_use, square_feet,
year_built, and floor_count)

Weather data

Onsite measurements of weather conditions.
(e.g., air_temperature, cloud_coverage,
dew_temperature, precip_depth_1_hr,
sea_level_pressure, wind_direction, and
wind_speed)

Temporal feature Derived features from timestamps. (e.g.,
hour, weekday, and day of year)

Target encoding feature
Average values of the target variable
aggregated by category (e.g., average values
grouped by building_id)

Value-change feature
Changes of time-series values in the form of
difference or ratio (e.g., the increase or
decrease of value compared to previous hour)

2.2.1 Value-change features.
Since the anomalies in this competition are (1) Point anomaly

and (2) sequential anomaly, the value change of the time series will
be an important feature for detection. Therefore, in the absence
of this feature type in the original dataset, value-change features,
which compute the value change in the form of difference and
ratio, were created. Figure 2 shows how the two value changes are
calculated. In addition, considering that the value change may be
continuous for several timesteps and that the energy data has daily
and weekly periodicity, different shift steps, from one timestep, 24
timesteps (1 day), to 168 timesteps (1 week) were also considered in
the value-change features. Although the difference and ratio value
changes are quite similar, the result shows that the inclusion of
both features could achieve the best prediction performance, so
they are both retained.

Difference 
between
values
= 98

Ratio 
between 
values
=2.92

Figure 2: Illustration of calculating value-change features: (1) Value
change in difference (red) and (2) Value change in ratio (green)

2.2.2 Value change in difference.
Difference between nearby values in time series data is one of

the most intuitive characteristics of value change. A sharp change
in value is likely to indicate a point anomaly; a value change of
zero may indicate flatlined anomalies, which are also known as se-
quential anomalies. To capture these value changes, varying shifts
of timesteps from 1 to 168 were included in the difference calcula-
tion. Furthermore, this competition does not require prediction into
the future, so both positive and negative shift steps were included.
However, if all combinations are considered, there will be up to
168*2=336 new features in total, which may adversely affect the
prediction model. Therefore, only shifts within one day were fully
accounted for (i.e., 1, 2, 3, and 23), while larger shifts were added
at 24-hour intervals (i.e., 24, 48, 72, and 168). Equation 2 is used to
calculate the value change in difference, where 𝑡 is the timestamp
and 𝑠 is the shift of timestamps.

Value change in difference = 𝑋 (𝑡) − 𝑋 (𝑡 − 𝑠) (2)

2.2.3 Value change in ratio.
Although the aforementioned difference-based value change

can effectively assist the prediction model in detecting time series
anomalies, the scales between time series or different time periods
sometimes vary greatly. Therefore, calculating the ratio of changes
will result in a more consistent and comparable scale than calculat-
ing the difference. In the calculation of the ratio, special attention
should be paid to the fact that the denominator cannot be zero, so
both the numerator and the denominator are added by one, respec-
tively, during the calculation. Equation 3 is used to calculate the
value change in ratio, where 𝑡 is the timestamp and 𝑠 is the shift of
timestamps.

Value change in ratio =
𝑋 (𝑡) + 1

𝑋 (𝑡 − 𝑠) + 1
(3)

2.2.4 Other features.
In addition to features introduced in the previous section, there

were also attempts to use savgol filter for difference calculation
of the smoothed values and K-means clustering of the time series.
However, these created features have no apparent positive effect
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on anomaly detection, so this article will not elaborate on these
features.

2.3 Modeling
2.3.1 Data splitting method.

Train and validation datasets were split by building_id to ensure
valid data were unseen during training. Compared to data splitting
by shuffling, the validation score generated by this method is very
close to the score calculated on the test data on the leaderboard
(the difference is less than 1%). Therefore, referring to the score
calculated from the validation dataset, prediction performance tun-
ing, such as feature engineering and model optimization, can be
performed locally.
2.3.2 Data downsampling.

The low proportion of anomalies in this dataset, which is about
5%, caused a severe imbalance of normal and abnormal data. In order
to solve the adverse effect of data imbalance on the classification
model, the downsampling method for normal data is adopted so
that normal and abnormal data can be balanced to occupy half of
the training data.
2.3.3 Tree-based classification models.

For classification problems with tabular data, tree-based models
are still the most popular and powerful choice. Among various tree-
based models, a few of them are particularly popular, i.e., LightGBM,
XGBoost, Catboost, and HistGradientBoosting. These models have
differences in computation speed and environmental adaptability,
but they all share close predictions with high accuracy. Therefore,
these tree-based models are often used in Kaggle data competitions.
It is particularly worth mentioning that LightGBM, as its name sug-
gests, is as fast as light. Therefore, most people use LightGBM to
model and calculate errors during feature engineering and testing of
data processing strategies. In the final stage of the competition, dif-
ferent models will be considered for modeling and hyperparameter
tuning.
2.3.4 Model ensembling.

One of the most common strategies for the final stage of data
competition is model ensembling. Each model has its own strengths
and weaknesses in prediction, even though performance scores be-
tween models were similar. The weighted average of the prediction
values of these multivariate models with similar performance can
usually improve the prediction accuracy effectively. In order to
simplify the operation, the solution proposed in this paper only
performs a simple average of the prediction results of the four
classification models mentioned in Section 2.3.3, meaning that the
weight of each prediction is 0.25 (as shown in Equation 4).

Ensemble model prediction = (LGBM+XGB+Cat+HistGB) ∗ 0.25
(4)

2.4 Post-processing
Following the completion of model prediction and model en-

sembling, simple rules were used for post-processing the prediction
results. According to a post on the discussion board in this competi-
tion, nearly 100% of the points withmeter_reading values of one are
anomalies. Furthermore, by visualizing time-series trend of each

power meter, the majority of starting and ending points of time se-
ries are not anomalies. Based on these two findings, post-processing
was performed as following rules:

(1) Set prediction to 1 (abnormal) for rows with meter_reading
values of 1

(2) Set prediction to 0 (normal) for start and end points of time
series

3 RESULTS
TheAUC-ROC score of the proposed solution in this competition

can reach as high as 0.9866, which is far beyond the 0.9 threshold
that is considered to be an excellent performance of the classifier.
It also performs exceptionally well in precision, where 98.7% of the
anomalies predicted by the proposed classification are correctly
labeled anomalies. In terms of recall rate, 81.9% of labeled faults can
be successfully detected by the classification model. The indicators
that can comprehensively evaluate the performance of classification,
combined with precision and recall rate, the f1 score can reach a
level of about 0.89. The Confusion matrix can be seen in Figure 3,
showing the number and percentage of points in each quadrant.

3.1 Importance and effects of features
Although there are numerous strategies for improving model

performance in the proposed solutions, the most crucial factor that
stands out in this competition is feature engineering, particularly
the proposed value-change variables. Value-change variables, in-
cluding two forms of difference and ratio, can effectively represent
the change levels between each point and its neighboring points.
In Figure 4, comparing the performance of the model before and
after feature engineering, the AUC increased from 0.9311 to 0.9849,
a significant increase of 5.8%. This significant improvement demon-
strates the predominance of feature engineering in this competition.
Additionally, Table 5 presents the top ten features of the proposed
solution by sorted feature importance, exported from the trained
lightGBM model. Among the existing features provided, metadata,
temporal features, and target encoding features all appear in the list
of the top 10 most important features and are of great significance.
It is noteworthy that the proposed value-change features hold four
of the top ten positions, demonstrating the crucial role of these
features. The interesting fact is that the shift timesteps for these
four are -1, 1, 2, and 168, showing that the most influential feature is
the value change from the nearest and one week away. This might
suggest that the weekly repeatability of energy data may aid in
the detection of anomalies. If the value of a point is significantly
different from the previous timestep or week, it is likely to be an
anomaly.

3.2 Model ensembling results
In addition to the previously mentioned work of data prepro-

cessing and feature engineering, creating diverse models for the
ensemble is another useful technique that can frequently outper-
form a single model. The proposed solution employs four popular
tree-based models with comparable good performance: LightGBM,
XGBoost, Catboost, and HistGradientBoosting. Table 2 presents the
individual classification performance of the four models, ranging
from 0.9840 to 0.9857, with very close prediction performance. By
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Figure 3: Confusion matrix of proposed solution on test dataset

Figure 4: ROC curve and AUC-score before and after feature engi-
neering

Figure 5: Feature importance of the 10 most influential features
exported by LightGBM

averaging the prediction results (probability of each label) of the
four models, the performance can be improved to 0.9867, approxi-
mately 0.21% higher than the original average performance.

Table 2: AUC-ROC scores of tree-based models and ensemble model

Model AUC-ROC score
Train Test

LightGBM 0.9975 0.9849
XGBoost 0.9999 0.9840
Catboost 0.9999 0.9857
Hist Gradient Boosting 0.9968 0.9839
Weighted average ensemble 0.9996 0.9866

3.3 Overview of public solutions in competition
To distinguish and analyze the differences between the pro-

posed method and other competitors’ solutions, Table 3 presents
the leaderboard scores (i.e., AUC-ROC score for test dataset) of
public notebooks on the Kaggle platform and their model strategies.
In the comparison of data preprocessing, solutions with a private
score lower than 0.90 did not address the problem of data imbalance.
In addition, the number of features seems to have a positive effect
on classification performance. In particular, the adoption of value-
changing features could effectively improve model performance.
Regarding the selection of classification models, tree-based models
remained the most popular option among competitors, and neither
neural networks nor deep learning was used. Although the model
ensemble is helpful for model performance improvement, it is not
the key to improving performance in this competition.

4 DISCUSSION
This section delves deeper into the insights provided by the

proposed solution. They include the proposed value-change fea-
tures that distinguish the winning solution from the competition,
as well as the high-performance benchmark established by the win-
ning solution, which offers significant potential for future related
research.

4.1 The significance of value-change features in
capturing context in time series

In the analysis of the impact of features in Subsection 3.1 on
model performance, additional value-change features can effec-
tively assist in anomaly detection. This shows that it is crucial to
provide information regarding value changes by calculating the dif-
ference between each point and its neighbors for the classification
model of anomaly detection. Notably, tree-based models applied to
tabular data lack the ability to self-extract features, so providing
additional such value-change features is a necessary step. Although
neural networks were not widely used in this competition, the
success of value-change features in this competition suggests that
employing a framework with context-learning capability (such as
Convolutional Neural Network) could be an effective strategy.

4.2 Benchmark of supervised learning in
anomaly detection of energy data

As the first anomaly detection competition for a large number
of power meters on various sites and buildings, the performance
of supervised learning models in this competition can serve as
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Table 3: List of publicly available shared solutions and their modeling strategies

Team / Author Public
score

Private
score

Preprocessing
techninques

Features
(count) Modeling strategies

Proposed 0.9734 0.9866 Normalization, imputation,
and downsampling Raw, V-C (169) Ensemble: LightGBM, XGBoost,

CatBoost, Hist Gradient Boosting

Abhishek Maurya 0.8794 0.9237 Normalization, imputation,
and downsampling Raw (31) XGBoost

Abdallah El-Sawy 0.7633 0.8189 Imputation Raw (10) Ensemble: KNN, DT, ET
FabioDalForno 0.7275 0.7566 Normalization, imputation Raw, V-C (6) Random Forest
Yoda 0.7105 0.7433 - Raw (33) XGBoost
shafiullah 0.6022 0.6242 Imputation Raw (19) XGBoost

Raw = Features from raw dataset; V-C = Value-change features

a benchmark for future research. In addition, the winning solu-
tion in this competition yielded an anomaly detection model with
an extraordinarily high AUC-ROC score of 0.9866, establishing a
high classification performance benchmark for anomaly detection
tasks. In particular, the winning classification model achieved a
high-performance level with only 200 power meters for training,
accounting for 14% of the whole LEAD dataset. This shows great
potential of supervised learning for anomaly detection of energy
data.

5 CONCLUSION AND FUTUREWORK
This study detailed and analyzed the winning solution in the

LEAD competition for anomaly detection of cross-country power
meters. In addition, the proposed method revealed the significance
of value-changing features and established a benchmark for future
research on supervised learning in energy data anomaly detection.
However, there are still possible research gaps worthy of further
exploration. First, the test dataset used to evaluate model perfor-
mance in this competition is a random sampling of power meters,
regardless of sites or countries. However, if the train and test data
were split by sites or countries, could the anomaly detection model
still accurately predict anomalies for meters in unseen locations?
In addition, only 200 power meters with anomaly labels were used
to train the classification model, which is a relatively small num-
ber compared to the whole dataset of approximately 1,400 meters.
If the number of power meters used to train the model changes,
at what point does the model’s performance plateau or begin to
decline? Filling these gaps in the future will make the proposed solu-
tion more comprehensive and influential on building management
professionals.
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