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ABSTRACT
Modern buildings are densely equipped with smart energy me-
ters, which periodically generate a massive amount of time-series
data yielding a few million data points every day. This data can be
leveraged to discover the underlying load and infer their energy con-
sumption patterns, inter-dependencies on environmental factors,
and the building’s operational properties. Furthermore, it allows
us to simultaneously identify anomalies present in the electricity
consumption profiles, which is a big step towards saving energy
and achieving global sustainability. However, to date, the lack of
large-scale annotated energy consumption datasets hinders the
ongoing research in anomaly detection. We contribute to this effort
by releasing a carefully annotated version of a publicly available
ASHRAE Great Energy Predictor III data set containing 1,413 smart
electricity meter time series spanning over one year. In addition,
we benchmark the performance of eight state-of-the-art anomaly
detection methods on our dataset and compare their performance.
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1 INTRODUCTION
Buildings are one of the largest energy consumers, accounting for
approximately 40% of the total energy usage in the world [12]. It
is estimated that 20% of the total energy consumed gets wasted
within buildings [11]. Further, the energy demand of the buildings
is increasing continuously and will rise by 28% by 2040 [5]. Hence
there is a pressing need to reduce energy wastage to lower the
energy footprint and cost of buildings’ utilities. The most common
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causes of energy wastage are equipment failure, aging, miscon-
figuration, and human-related errors. This wasteful use of energy
which is mostly quantified as unusual energy usage can be identified
and prevented using a data-driven analytical technique known as
anomaly detection [7, 10].

More recently, the fast-paced proliferation of smart meters has
led to a boost in research focused on leveraging smart meter data
for anomaly detection in buildings [1]. This surge in anomaly de-
tection research is due to (i) the realization of the significance of
the contribution of buildings towards gross energy consumption
and (ii) the benefits it can garner in terms of long-term energy
sustainability in buildings. Also, it is the most efficient mode of
sensing and detection due to ease of installation, monitoring, and
scalability. Anomaly detection in building energy consumption is
the process of identifying unusual energy usage events that lead
to energy waste. Such abnormal use differs significantly from the
normal energy usage patterns. The proliferation of advanced meter-
ing infrastructure (AMI) [6], along with improved computationally
intelligent methods, makes it possible to develop automated anom-
aly detection techniques [7]. These techniques track the building’s
energy consumption patterns from the aggregate smart meter data,
identify anomalous events of energy consumption and report them
to building managers for further action.

A vast literature on anomaly detection techniques exists for time
series in various domains [4]. In [7], the authors describe some of
the practical challenges in detecting anomalies in energy consump-
tion data and reviewed different approaches namely (a) statistics-
based rule sets, (b) unsupervised, and (c) supervised. While anomaly
detection in building energy consumption is an active area of re-
search, several challenges exist and hampers its acceptance in the
real world as a method to screen and optimize energy utilization [7].
This include (a) difficulty in collection and assignment of anomaly
labels, (b) lack of annotated public dataset for anomaly detection
research, furthermore, (c) due to a lack of annotated dataset, people
have widely used unsupervised methods, which lead to a higher
rate of false positives. Consequently, building operators have to
go through all identified anomalies and filter out the genuine ones
to take further actions, which is a tedious and time-consuming
task. Due to this limitation, existing studies have evaluated the
models on a few buildings, making it difficult to estimate the true
energy-saving potential of the models.

To mitigate these limitations, we annotate and release LEAD1.0
– a Large-scale Energy Anomaly Detection1 dataset consist-
ing of 1,413 smart electricity meter data spanning over an year.
To the best of our knowledge, this dataset is so far the largest for

1https://github.com/samy101/lead-dataset
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Figure 1: The hourly electricity usage patterns (normalized) of two buildings with examples for point and sequential anomalies.
It shows, (a) daily and weekly power usage cycles, (b) examples of single point anomaly (marked in black), and (c) examples
of sequence anomaly (marked in red). The X-axis denotes the day of the year, and Y-axis is the hour of the day. The colors
represent the electricity usage at that hour, with blue being lower and red being higher usage.

energy anomaly detection in the public domain. We also bench-
mark the performance of several state-of-the-art approaches and
release the code-base of anomaly annotation tool in open-source
for community use.

2 DATA SET PREPARATION
We leveraged the dataset used in the Great Energy Predictor III
competition2 conducted in 2019 on the Kaggle platform [8]. This
dataset includes one year of hourly meter readings from 1,636 non-
residential buildings collected from 16 different sites worldwide [9].
Also, it contains building meta-data like 𝑠𝑞𝑢𝑎𝑟𝑒_𝑓 𝑒𝑒𝑡 , 𝑦𝑒𝑎𝑟_𝑏𝑢𝑖𝑙𝑡 ,
and 𝑓 𝑙𝑜𝑜𝑟_𝑐𝑜𝑢𝑛𝑡 to describe the structure of the building (specified
by the 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑖𝑑). Furthermore, it is accompanied by various
weather parameters to help model the buildings’ energy usage
better.

This dataset had measurements taken from four different energy
meter types (electricity, chilled water, steam, and hot-water). For
the task of anomaly detection, we exercised hourly meter readings
data from 1,413 electricity meters covering 16 different building
types, such as office, monitored for one year. Please note that in the
original ASHRAE dataset, there were 1,636 buildings (not meters).
Each building had different energy meter types such as electricity,
hot-water, etc. In this paper, we have focused only on the electricity
meters (1,413) and in future we plan to annotate other meter types
as well. The top five winners of this competition have annotated
some outliers that they excluded for model development; however,
these annotations were not comprehensive and were missing class
labels for different types of anomalies.

In our expedition, we annotated this dataset with (a) point anom-
alies and (b) sequential or collective anomalies:

2https://www.kaggle.com/c/ashrae-energy-prediction/

(1) Point anomaly: A point anomaly occurs when an individual
point can be considered as an anomaly compared to the rest
of the energy consumption data [2]. Also, a point anomaly
can be explained as an energy consumption instance that
appears unusual when compared to the overall/whole time
series (global) or compared to its neighboring points (local).
It occurs once at any time and does not repeat. Figure 1
shows the example of a single point anomaly (a single day
within the black box) in Meter-1.

(2) Sequential or collective anomaly: A sequential anomaly
refers to a consecutive set of energy consumption events
whose joint behavior is unusual. It may occur once or re-
peatedly at regular intervals [1]. It can also be explained as
a collection of related data instances which are anomalous
with respect to the entire data set. The individual data in-
stances in a collective anomaly may not be anomalies by
themselves, but their occurrence together as a collection is
anomalous [3]. Sequential anomalies can also be local or
global. Figure 1 shows examples of sequence anomalies (red
boxes) in Meter-1 and 2 as some power-intensive appliances
were turned-on during non-working hours for a few days in
a row.

We have developed a web-based tool to annotate every point in
the electricity meter time series. This process involved manually
examining approximately 12 million data points in total, with each
inspection window having 8,784 data points on an average for each
electricity meter. The original ASHRAE dataset contains hourly
readings for the entire year of 2016. Since 2016 is a leap year, there
were 8,784 (366x24) samples for each meter. Each manual inspection
(over 24 hour window span) took somewhere from three to five
minutes, collectively accounting for approximately 100 man-hours
invested for this strenuous annotation exercise. Please note, that
we have carefully annotated with an hourly data span, and not full
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days. The current benchmarking study (discussed in Section-3) is
focused on detecting whether a day has any anomaly or not, inline
with some previous studies found in the literature. However, it
is quite possible to pinpoint the anomalies in our dataset using a
different experimental setup with the same PyOD models.

We followed a fixed protocol for annotating each time window
(as discussed below). For each meter’s time-series plot, we zoom in
and look for a weekly or daily pattern in the time series of meter
readings. (i) If the plot follows a weekly or daily pattern, then we
look for the disturbance in this pattern. And that disturbance is
marked as an anomaly. (ii) If the plot does not have any suitable
pattern, then we look for the days having higher or lower energy
consumption than the usual. If we find that there is a large difference
between that day’s energy consumption and its nearby days, then
we mark that as an anomaly. It is hard to follow the same set of rules
for annotating anomalies in all the buildings because each building
has a different definition of anomaly but above mentioned steps are
the most common steps that we applied while doing annotation.
Also, the tool that we have created provides us a better and efficient
way to annotate. We have released this web-tool along with this
dataset for the public use. Please note, these anomalies were defined
based on literature and after going through each raw time series
and also enforced a verification process as part of our anomaly
annotation protocol. Precisely, we had 199,640 (1.66%) anomalous
instances present across 12,060,910 data points logged by 1,413
energy meters (excluding the missing data points which would
make the total count of 12,411,792 data points i.e. 1,413 meters x
8784 [366days x 24hrs]).

3 BENCHMARKING
3.1 Data pre-processing
We first create new categorical features based on the timestep -
hour, day, weekday, and month. Then, we normalize all the avail-
able features using the z-score normalization technique. We don’t
directly use the meter-reading data but calculate its natural loga-
rithm. We have used log(p+1) for data-normalization, as this is a
standard way to scale the target before fitting the model and use
it for prediction purposes. Post data-normalization, we group the
data available for each building and apply a sliding window across
the available timesteps. In this paper, we have experimented with
24-hour windows with zero overlaps, so that models try to learn
daily energy patterns for each building.

3.2 Baseline Models
We have considered a variety of statistics-based methods as well as
machine learning-based methods for benchmarking anomaly detec-
tion on our dataset. Conventionally, clustering-based algorithms
are already being employed in various applications where anomaly
detection has been studied. In our work, we evaluate some of these
techniques, which include (a) Cluster-based Local Outlier Factor
(CBLOF), (b) Feature Bagging, (c) Histogram-base Outlier Detection
(HBOS), (d) Isolation Forest, (e) K-Nearest Neighbors (KNN), (f)
Local Outlier Factor (LOF), (g) Minimum Covariance Determinant
(MCD), and (h) One-class SVM (OCSVM). All these models were

implemented in Python with the help of the PyOD library3 and
executed on Google Colab platform.

3.3 Evaluation Metrics
In this work, we have used Precision, Recall, and F1 score to have a
fair understanding of the distribution of false positives and false
negatives while determining anomalous profiles. The formulas are
as follows -

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(2)

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(3)

3.4 Experimental setup
Firstly, we separate the anomalous and the non-anomalous data.
The non-anomalous samples were split into train(80%), valida-
tion(10%) and test(10%) sets, and the anomalous samples were split
into train(10%), validation(20%) and test(70%) sets. Both the non-
anomalous and anomalous sets were combined to make the final
training, validation, and test tests. The model is trained on the
training sets and then validated using validation set. The threshold
calculated based on the validation sets is then used on the test sets
to measure the model performance.

3.5 Model comparison
Please note that we are not interested to specifically pinpoint the
time point of the anomalous activity. However, in this work, we
focus on identifying whether the entire 24-hour sequence is anoma-
lous or not. We compute F1-Score, Precision and Recall (as men-
tioned previously) on our annotated dataset. These results are pre-
sented in Table 1. K-Nearest Neighbors and Minimum Covariance
Determinant yield the highest precision i.e. 0.902 and 0.901 respec-
tively. In terms of recall, KNN stands out by yielding 0.284 recall
followed by Local Outlier Factor whose recall is around 0.281. In
terms of F1-score, obviously KNN outperforms all the models by
yielding an F1-score of 0.431, followed by Local Outlier Factor
whose score is around 0.426. We acknowledge that we have only
tried to conduct a limited benchmarking exercise here, and the list
of models that we have experimented with is no where an exhaus-
tive list and definitely there are plenty of other models which can
tried out on this data.

4 DISCUSSION AND CONCLUSIONS
Data-driven energy sustainability in buildings is considered to be a
major leap in reducing carbon footprint and asserting the pace of
the ongoing climate change. As Buildings are one of the significant
energy consumers, they are a strong contender for energy optimisa-
tion with a long-term goal of energy sustainability. Among various
techniques proposed to emend energy consumption in the buildings,
data-driven energy monitoring and energy anomaly detection serve
the highest priority. This preference is due to inherently simple de-
ployments of energy meters, absence of cumbersome retrofits and

3https://github.com/yzhao062/pyod
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Table 1: Comparison of F1-score, Precision and Recall of all anomaly detection models.

Model F1-score Precision Recall

Cluster-based Local Outlier Factor (CBLOF) 0.425 0.900 0.277
Feature Bagging 0.424 0.899 0.279
K-Nearest Neighbors (KNN) 0.431 0.902 0.284
Histogram-base Outlier Detection (HBOS) 0.397 0.896 0.258
Isolation Forest 0.413 0.895 0.270
One-class SVM (OCSVM) 0.421 0.899 0.276
Local Outlier Factor (LOF) 0.426 0.900 0.281
Minimum Covariance Determinant (MCD) 0.422 0.901 0.276

up-gradation of infrastructure needed for these techniques. Anom-
aly detection caters to this broader goal by identifying avoidable
electricity usage and reporting it to the stakeholders.

Regardless, the data processing techniques are still not stream-
lined and standardized, especially the data annotation process. Due
to the practical difficulties in collecting accurate anomaly labels
along with meter data, manual data labeling is still the default mode
used to annotate the meter readings as a post-processing step. We
laid a fixed set of rules to identify and mark these anomalies as
described in Section-2 (Data Preparation) to handle this manual
annotation process better. By following our anomaly annotation
rules, we annotate a large public dataset having electricity data
from 1,413 non-residential buildings to facilitate the design and
evaluation of machine learning techniques for anomaly detection.
To the best our understanding, this is the most precisely annotated
longitudinal dataset available for anomaly detection in commercial
buildings. Furthermore, this large dataset collected across differ-
ent types of buildings (spread across the world) will amplify the
development of more generalized machine learning models.

We also benchmarked and evaluated the performance of off-the-
shelf anomaly detection models in terms of F1-Score, Precision, and
Recall (shown in Table 1). This is to understand how well these
models can learn with the anomalous data that we have curated.
Their performance only establishes a benchmark to compare other
ML techniques on this dataset. Apart from this, we released an easy-
to-use web tool, which can be used for annotating any time series
data. Although, this annotated dataset (one year long), along with
initial accuracy reports with off-the-shelf models, is a good starting
for the development of anomaly detection models. However, this
annotation exercise can be further extended to other public datasets.
Also, in the future, we plan to exercise more comprehensive models
using state-of-the-art deep learning techniques to improve the effi-
cacy of anomaly detection further. We aim to release these findings
in our future work, which is planned along these lines.
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