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Abstract

This work presents a study on the characterization of the air-conditioning (AC) usage pattern of non-residential buildings from
longitudinal thermal images collected at the urban scale. The operational pattern of two different air-conditioning systems (water-
cooled systems operating on a pre-set schedule and window AC units operated by the occupants) are studied from the thermal
images. It is observed that for the water-cooled system, the difference between the rate of change of the window and wall temper-
ature can be used to extract the operational pattern. While, in the case of the window AC units, wavelet transform of the AC unit
temperature is used to extract the frequency and time domain information of the AC unit operation. The results of the analysis are
compared against the indoor temperature sensors installed in the office spaces of the building. This forms one of the first few studies
on the operational behavior of HVAC systems for non-residential buildings using the longitudinal thermal imaging technique. The
output from this study can be used to better understand the operational and occupant behavior, without requiring to deploy a large
array of sensors in the building space.
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1. Introduction

The energy sector has been one of the major contributors to
greenhouse gas (GHG) emissions and climate change. Electric-
ity and heating are one of the largest sub-sector that contributes
close to 24% of the GHG emissions [1]. Energy consump-
tion is expected to increase in the future due to the growing
demand for heating and cooling. Improvement in building en-
ergy performance to reduce energy consumption has been stud-
ied extensively and implemented through various technologi-
cal innovations in the form of energy-efficient building mate-
rials, façade systems, high-efficiency heating, ventilation, and
air conditioning systems (HVAC), energy-efficient appliances,
and others ([2–4]). Besides the adoption of these technologies,
increased energy savings are also achieved by the optimal op-
eration of the energy systems. The operation of the system is
aimed not only to minimize energy usage and cost but also aims
at maximizing occupant comfort, well-being, and satisfaction.

Various approaches such as regular energy audits ([5]), nu-
merical simulation of the built environment ([6, 7]), and data-
driven approaches involving analyses of the energy meter data
([8, 9]) are adopted for analysis of the building performance.
Energy audits and surveys are conducted once every few years
to understand the building’s energy usage and performance.
The amount of metadata that is to be collected depends on the
level of energy audit ([10]). A comprehensive energy audit

requires information on the environment profile, occupant be-
haviour, parameters and the number of systems using energy in
addition to the energy use data ([2]), which can make the audit-
ing process laborious and time-consuming. On the other hand,
numerical simulation of building energy performance typically
requires calibrating the model to ensure its reliability ([11, 12]).
However, model calibration remains challenging due to a lack
of clear guidelines and best practices ([13]). Also, the numer-
ical simulation require the knowledge of indoor and outdoor
conditions, that are provided as input to the model and accurate
estimation of these parameters can be difficult. Data-driven ap-
proaches have gained traction in the recent few years because
of the availability of smart meter data and other building sensor
measurement data. These methods have found applications in
energy management such as load profiling ([14, 15]), anomaly
detection [16], demand and response studies ([17]), and energy
forecasting ([9, 18]).

Studying building operational behaviour can assist in under-
standing the energy usage pattern and also in identifying ef-
ficiencies and inefficiencies arising out of the usage pattern.
According to the International Energy Agency ([19]) report on
cooling, space cooling accounts for nearly 16% of building sec-
tor final electricity consumption in 2020. Typically, in the case
of a commercial building, the demand for cooling is met by a
centralized HVAC system. These air conditioning systems are
generally operated on a pre-defined schedule, and their opera-
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tion is targeted at providing comfortable working indoor tem-
perature and humidity conditions for the occupants. This tem-
perature may be different from the outdoor temperature depend-
ing on the location of the building. Several research studies
have shown that is it possible to determine the duration of oper-
ation of the air conditioning system using the measured indoor
temperature. In the case of residential buildings, the AC oper-
ation largely depends on the occupant behaviour, weather con-
ditions, socio-economic conditions and others ([20–22]). Un-
like residential buildings, there are very few research studies
conducted for commercial/office buildings ([23, 24]). In either
case, such studies on air conditioning usage patterns have been
carried out through instrumentation of the buildings with an ex-
tensive network of sensors.

In the recent work by [25] possibility to observe the split AC
operational behaviour for residential buildings using infrared
imaging is demonstrated. Infrared imaging offers a non-contact
way of monitoring the operation and does not require extensive
sensor instrumentation of the indoor spaces. However, most of
the work demonstrates AC usage during the night time. While,
in the case of commercial buildings, typical air-conditioning
peak cooling loads are observed during the day. Also, in non-
residential buildings, cooling of indoor spaces can be achieved
using the centralized air-conditioning system or split/window
AC units, or a combination of two. In summary, the AC opera-
tion in commercial buildings can be quite different from that of
residential buildings ([26]).

This research aims at providing an alternative means for
identifying the operational behaviour of the air conditioning
system in an educational building using the longitudinal ther-
mal images. The main research question that is addressed in
this study is: ‘How to describe the building HVAC operation
using the surface temperature of the buildings measured using
a thermal camera at an urban scale?’. The research question is
further broken down into sub-questions as follows:

• How is the change in surface temperature of windows and
walls of the building correlated to air-conditioning opera-
tion pattern?

• Can the change in the surface temperature of the window
AC condenser units be used to identify AC usage patterns?

• What are the conditions for capturing IR images that can
yield maximum information gain for this application?

To achieve the mentioned objectives, a thermal observatory
was installed on a rooftop of a building overseeing some of the
educational buildings on the campus of the National University
of Singapore. This work is an outcome of the study conducted
over a duration of four months. In the following section, some
of the studies related to thermal imaging and time series anal-
ysis are discussed. The methodology adopted for this study is
presented in Section 3. In Section 4, the results from the anal-
ysis of thermal images are explained in detail. Finally, conclu-
sions from this study are summarised in Section 5.

2. Related studies

2.1. Infrared (IR) imaging
Every object emits infrared (IR) radiation (as long as its tem-

perature is greater than absolute zero) depending on its temper-
ature. The IR camera is equipped with suitable sensors to cap-
ture the infrared radiation from the objects and creates a thermal
visualization of the scene. Observing the changes and differ-
ences in temperature profile of objects through thermal imag-
ing has been useful in several applications such as monitoring
heat flows, performing quality checks for identifying heating
elements in a system, detecting leakages, building inspections
and many others ([27]).

One of the main advantage of using IR imaging is that it of-
fers a non-contact technique for scanning a large area in a short
time period. A thermal camera consists of an optical system
that focuses the radiation from the scene onto a detector called
a microbolometer. When the long-wave infrared (LWIR) radi-
ation strikes the detector, it results in changes in its resistance,
which is converted to apparent temperature (Tob j) values esti-
mated as follows ([28]):

Tob j =
B

ln( R1
R2(Utot+O) + f )

(1)

where, Utot is the signal response to the LWIR incident on the
detector, B, R1, R2, O and F are the camera calibration con-
stants, which are calibrated based upon the type of camera and
application, and are included in the metadata of each thermal
image.

The camera output signal (Utot) is a result of radiation from
three sources which are radiation from the object, radiation re-
flected by the object, and the radiation transmitted from the at-
mosphere and is given as follows:

Utot = ετUob j + τ(1 − ε)Ure f l + (1 − τ)Uatm (2)

where, ε is the emissivity of the object, τ is the atmospheric
transmissivity, Uob j is the radiation in terms of signal response
from the object, Ure f l is the radiation reflected by the object,
and Uatm is the radiation transmitted from the atmosphere.

IR imaging have been used extensively in the built environ-
ment for carrying out building energy audits ([29, 30]), detec-
tion of structural defects in building ([31, 32]), estimating the
thermal transmittance ([33]), predicting occupant thermal com-
fort preferences ([34, 35]), and detecting window opening state
[36]. The temporal and spatial scale at which the imaging is
performed can greatly vary depending on the nature of applica-
tion, and availability of resources. At the spatial level, imaging
can be classified as ([37]): 1) micro-scale, 2) local scale, and
3) mesoscale. Micro-scale studies require a handheld IR cam-
era or Unmanned Ariel Vehicle (UAV) for imaging. In thermal
inspection using UAVs a drone with an IR camera is used for
conducting building energy audits, retrieving material proper-
ties (U-value) of building elements, and structural defect detec-
tion. However, such methods require drone flight path planning,
and this can increase the cost of the entire operation ([38, 39]).
Further, it is difficult to obtain longitudinal data using UAV,
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which is required for describing hourly and diurnal changes in
the operation. Mesoscale IR imaging involves the use of IR
data captured using satellites and is mainly employed for ur-
ban heat island analysis at a city scale. The local scale is the
scale between the two and mainly consist of an observatory for
scanning over a distance of a few hundred meters. Studies have
shown that Mesoscale IR scanning can be used for estimation
the heat fluxes ([40, 41]), identifying heat sources in the urban
canopy ([42]) and extraction of AC usage pattern in residential
units ([25]). In this work, imaging is performed at the local
scale to understand the operation pattern of HVAC system in an
educational building.

2.2. Pattern detection from time series
Analysis of time series to identify patterns is one of the well

researched area ([43, 44]). Depending on the time-series pat-
tern, insights on physical phenomena can be extracted either
from time-domain or frequency domain analysis or both. Fast
Fourier Transform (FFT) is commonly used to analyse the time-
series in frequency domain. This has been widely used for var-
ious applications such as fault detection, image processing, sig-
nal processing, condition monitoring and others. Even though
it is possible to obtain the frequency content using FFT, it does
not provide any temporal information. Short term Fourier trans-
form is a type of Fourier transform used to determine the fre-
quency content of short segments of time series with time. One
of the drawbacks with short term Fourier transform is that the
resolution is fixed, which implies the window selected for trans-
form will affect the time or frequency resolution. Using a nar-
row window can result in poor frequency resolution but better
time resolution. While, using a broad window will result in
poor time resolution but with better frequency resolution.

Wavelet transform ([45, 46]), on the other hand overcomes
the shortcomings of fixed resolution faced in the case of short
term Fourier transform. A Wavelet in a wavelet transform is
a wave-like oscillation with a finite duration and zero mean.
There are several types of wavelets such as the Morlet, Mexi-
can Hat, Coiflets, Daubechies and others. The choice of wavelet
will depend on the type of application. The two aspect of trans-
form is scaling and shifting. Scaling refers to extent of stretch-
ing or shrinking of the wavelet and is inversely proportional to
the wavelet frequency. While shifting refers to the delay or ad-
vancing the wavelet along the duration of signal. Depending on
how the wavelet are scaled and shifted the wavelet transform
is classified as continuous wavelet transform (CWT) and dis-
crete wavelet transform (DWT). CWT is mainly used for time
frequency analysis. While, DWT is used for de-noising and
compressing images or signal. In this work, CWT is used for
performing time-frequency analysis. CWT of a signal x(t) ex-
pressed as follows:

Xw(a, b) =
1
√

(|a|)

∫ ∞
−∞

x(t)ψ(
t − b

a
)dx (3)

where a is the scale factor, b is the transnational value, and ψ(t)
is the mother wavelet that is continuous in both time and fre-
quency domain, and the over line represent the conjugate com-
plex operation.

3. Methodology

In this section the methodology adopted for sensor measure-
ments involving urban scale IR imaging, point measurements
and data analysis of the thermal data are discussed in detail.

3.1. Measurements
3.1.1. Urban scale Infrared (IR) observatory

Figure 1 (top) shows the map of the location of the instal-
lation of the urban-scale IR observatory. The observatory is
installed on the rooftop of a residential building at a height of
about 42m from the ground level. To the west of the obser-
vatory are the four buildings marked as ‘A’, ‘B’, ‘C’, and ‘D’,
and the corresponding digital images as viewed from the ob-
servatory are shown in Figure 1 (center). Building ‘A’ is a
fully glazed building, buildings ‘B’ and ‘C’ are concrete build-
ings with windows and building ‘D’ is a net-zero building. IR
observatory installed at the rooftop of the building overseeing
these buildings is shown in Figure 1 (bottom left).

The thermal camera (FLIR 300) is housed in a casing to pro-
tect it from the external environment and extreme weather con-
ditions. The specifications and the default Plank’s constant of
the thermal camera are listed in Table 1 and Table 2 respec-
tively. The camera housed in the casing is mounted on a pan-tilt
unit that can rotate along 360° in the horizontal axis. The pan-
tilt unit and the camera are installed on a truss tower fixed to
the base plate. The concrete blocks are placed on either side of
the base plate, which prevents motion/sway of the truss tower
due to external loads such as wind. In addition, an air termi-
nal is also installed to protect the observatory from lightning.
The pan-tilt unit and the thermal camera are connected to a lap-
top housed in weather-protected casing in the water tank room
located next to the observatory as shown in Figure 1 (bottom
right). The pan-tilt unit is programmed to stop at four instances
for fifteen seconds each during one rotation cycle in to cap-
ture thermal images of four buildings. A software interface
developed by NAX Instruments Pte Ltd is used for capturing
and storing images in jpg format. Of the four buildings shown
in Figure 1, building ‘B’ and building ’C’ are of interest in
this study. Indoor spaces of building ‘B’ and most of building
‘C’ are air-conditioned using a water-cooled centralized HVAC
system. While some of the office spaces in Building ‘C’ are
air-conditioned using window or split AC units. The windows
in Building ‘B’ and Building ‘C’ are double glazed and single
pane windows respectively.

3.1.2. Point temperature measurement
In addition to the surface temperature measured using the

thermal camera, indoor dry-bulb air temperature and outdoor
surface temperature measurement sensors were installed in
some of the office spaces of the buildings. The main purpose
for installation of point temperature measurement sensors is
to compare the temperature data from the IR image with the
ground truth. For monitoring the indoor dry-bulb temperature,
UbiBot WS1 pro indoor monitoring sensors (temperature ac-
curacy of ± 0.3◦C) were installed in the indoor spaces next to
the windows as shown in Figure 2. In addition to the indoor
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Figure 1: Figure showing the location of the four buildings captured using the thermal, and the IR camera observatory (adapted from [47]).
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Resolution 16 bit, 320x240 pixels
Thermal sensitivity 50mK @ 30oC

Sensor Uncooled Microbolometer FPA
Spectral range 7.5 to 13 µm

Field of view (FOV) 25o (H) and 18.8o (V)
Accuracy ±2o or 2% of reading

Power supply 110/220 V AC
Weight 0.7 kg

Size 170mm x 70mm x 70mm

Table 1: FLIR A300 thermal camera specification

R1 14911.1846
R2 0.0108
f 1.0
O -6303.0
B 1396.6

Table 2: FLIR A300 thermal camera default Plank’s constant

temperature sensor, one of the windows of Building ‘B’ was in-
strumented to monitor its surface temperature. These windows
were previously single pane, which was retrofitted with instal-
lation of another window pane next to the existing one. Two
resistance temperature detector (RTD) sensors were installed
on the window surface, one on the exterior surface exposed to
the outdoor environment, and another on the window exposed
to the indoor environment. These sensors were attached to the
surface using thermal conductive putty for good transfer of heat
from the surface to the sensor. In addition to the two temper-
ature sensors for measuring the surface temperature, another
RTD sensor was installed to monitor the indoor dry-bulb tem-
perature.

3.2. Image processing and Time series analysis
The first step in the analysis of the images is the cleaning

of the data. During rain, due to the thermal radiation from the
rain droplets, the captured images are not suitable for analy-
sis. Also, it is required to remove the images that are captured
during the motion of the pan-tilt unit. To achieve this a classifi-
cation model using convolution neural network (CNN) ([48]) is
implemented and the images are classified based on the build-
ing type and corrupted images (those that are not suitable for
analysis). The CNN model consists of three convolution blocks
with a max pooling layer for each of them, which is followed
by a fully connected layer. The model is trained on 4316 pre-
classified images and subsequently used for classification of the
entire infrared image dataset.

The next step after the classification of the images is the ex-
traction of the radiometric data. For this, ‘flirextractor’ python
package ([49]) is used. The raw values from the image are con-
verted to temperature using Equation 1. The temperature val-
ues are stored in comma-separated value (CSV) format, which
allows easy and faster access to the temperature data. Subse-
quently, temperature time series from regions of interest (RoI)
in the image are extracted. In this work, the RoI is a set of pix-
els in the image that corresponds to either wall, window, or AC

units. The RoI in the thermal image is identified and segmented
using labelme ([50]), an open-source annotation tool. From the
thermal data, the temperature of RoI is extracted and stored in
CSV format, which can be easily used for further analysis.

Depending on the nature of the time series and the level of
information to be extracted, analysis can be performed in the
time-domain or frequency domain, or both. In this work, the
operation pattern of two different types of HVAC systems are
analysed. The first one is the water-cooled HVAC system that
has a pre-decided operation pattern. That is, almost every day
the system is switched on and off at a fixed time. The sec-
ond type is air-cooled window and split AC units, which are
operated according to the needs of the occupant. Thus, these
two systems require two different methodologies for the analy-
sis of the operation patterns from the thermal time series data
extracted from the IR images. The analysis of the operation of
HVAC system with pre-defined operation pattern is performed
in the time domain. While the analysis of the AC units with
separate condenser units is performed mainly in the frequency
domain using both Fast Fourier transform and wavelet trans-
form. In the subsequent sections, the analysis and the results
from the analysis of operation of the HVAC systems are ex-
plained in detail.

4. Results and analysis

In this section results from the infrared imaging study to
characterize the operational behaviour of the HVAC system are
presented.

4.1. IRIS Dataset

Figure 3 shows the IR images of the four buildings cap-
tured using the thermal camera. The colour contrast helps in
identifying the hotter and cooler regions. That is, in the fig-
ure shown, the temperature of the bright regions is higher than
the darker regions. As described in Section 3.2, a CNN model
for classification is developed for the removal of unwanted im-
ages and also for classifying the four different buildings. The
trained model has an accuracy of 0.98% on the test dataset and
is subsequently used for the classification of the rest of the IR
dataset. The urban scale infrared observatory is operated for
four months period yielding an infrared image dataset that is
rich longitudinally as well as spatially. One of the important
aspect of any measurement is its level of accuracy. To verify
the surface temperature measurement from the IR camera, the
temperature time series data from the IR images are compared
against ground truth measurements. This is described in the
detail in the subsequent section.

4.2. Comparison of the extracted IR temperature against
ground truth measurement

The accuracy of the temperature data collected using the ther-
mal image is compared against the surface temperature of the
windows measured using the RTD sensors. Figure 4(a) shows
the temperature extracted from thermal images and the win-
dow surface temperature measured using the RTD sensor. It
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(a) Surface temperature measurement

(b) Dry-bulb air temperature

Figure 2: Digital image of the buildings showing the location of (a) the surface temperature contact sensor, and (b) the dry-bulb indoor air temperature sensor (the
red boxes indicates the location of the sensor)

Figure 3: IR images of the buildings captured using the thermal camera (adapted from [47]).
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is observed that the temperature recorded using the IR camera
is higher than the temperature measured using the RTD surface
contact sensor. From Equation 2, it is possible to infer that the
camera output signal depends not only on the radiation from the
object but also on the emissivity of the object, radiation from
the atmosphere, and transmissivity of the atmosphere. Thus,
the difference in the absolute value of the temperature could be
because of the differences in the assumed emissivity value and
the actual emissivity value of the glass window, radiation from
the surrounding environment, and also changes in the ambient
conditions. For better accuracy in the measured values, such as
in the case of studies on urban heat island effect, using accurate
values of emissivity of the objects, can help improve the mea-
surement accuracy. Nevertheless, in this study, it is observed
that the de-trended time series (Figure 4(b)) of the surface tem-
perature from the IR image and the RTD sensor are very similar.
Here, the de-trending of the data is achieved by subtracting the
least square fit to the data from the data itself. It is evident from
the plot that even though the IR temperature may not measure
the absolute surface temperature, the time-series pattern can be
used to identify changes in the surface temperature and thereby
the operational pattern.

4.3. Air-conditioning usage
In this section, the results from the analysis of centralized

HVAC operation are presented first followed by analysis of the
window AC unit operation.

4.3.1. Centralized HVAC operation
Figure 5(a) shows the digital image of the building that

is cooled through the centralised air conditioning system and
the red box in the figure is the location of the office space
where indoor sensor for monitoring dry-bulb temperature is in-
stalled. Figure 5(b)(top) shows the surface temperature of win-
dow and wall measured using the thermal camera and Figure
5(b)(bottom) shows the indoor dry-bulb temperature measured
using the indoor monitoring sensor. As observed from the im-
age, the temperature of the window is lower than the temper-
ature of the wall and this difference is higher during the day.
However, both the wall and window temperature time series ap-
pear to have a similar time series pattern. Whereas, the indoor
dry-bulb temperature time-series pattern is quite different from
the measured surface temperature of the window and wall. For
instance, every day except for Saturday and Sunday, a sudden
drop in the indoor temperature is observed at 6:00 in the morn-
ing and a gradual increase in temperature at 22:00 in the night.
Similar behaviour is observed for Saturday, except the increase
in temperature occurs at 18:00 in the evening instead of 22:00
in the night. From the indoor temperature profile, the instance
corresponding to a sudden decrease in temperature corresponds
to the time when the HVAC system is switched ‘on’ and the
instance corresponding to a gradual increase is the time HVAC
system is switched ‘off’.

The external surface heat balance is given as the sum of ab-
sorbed direct and diffuse solar radiation heat flux, net longwave
thermal radiation flux exchange with air and surroundings, con-
vective flux exchange with outside air and conduction heat flux
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Figure 4: Plot showing the (a) surface temperature recorded using RTD sensor
and thermal camera, and (b) corresponding de-trended temperature time-series.
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(a) Location of region of interest (RoI)

(b) Window, wall and indoor temperature

Figure 5: (a) Digital image of the building under consideration, the red box
indicates the window whose temperature is being analysed; (b) time-series plot
of the temperature of wall and window extracted from IR image and the indoor
dry-bulb air temperature measured using indoor sensor.

into the wall. Thus the temperature of the window and wall sur-
faces exposed to the outdoor environment depends on several
factors such as the outdoor temperature, the indoor temperature,
temperature of the objects surrounding it, wind speed and direc-
tion, solar radiation, material properties of the surface, and the
thickness of the surface. Any change in the external or indoor
temperature or environmental factors would result in a change
in the temperature of the window and the wall. For the wall and
the window at the same location (exposed to similar environ-
mental conditions), the rate of change in the temperature of the
window and the wall would be different due to the differences
in the thermal conductivity and the thickness of the material.
Thus by observing the differences in the rate of change in the
temperature of the wall and the window simultaneously, sudden
changes in the indoor temperature can be detected.

Figure 6(a) and (b) shows the rate of change in the indoor
dry bulb temperature measured using the temperature sensor
and the rate of change in the difference between the window and
the wall de-trended temperature from the IR image respectively.
The rate of change in the de-trended temperature time series is
estimated at every 30 minutes time interval. As shown in in
the heatmap of Figure 6(a) at 6:00 in the morning, the rate of
change in the temperature with time changes from a value close
to 0 to a negative value. This is because the HVAC system is
switched ‘on’ and the indoor temperature decreases to the set-
point temperature in a short time period. A similar change is
observed in the heatmap shown in Figure 6(b) for the rate of
change extracted from the IR image.

In the same manner, at 22:00, the rate of change in the tem-
perature with time changes from a value close to zero to a pos-
itive value for both the heatmaps shown in Figure 6(a) and (b).
This is the time the HVAC system is switched ‘off’ and the
temperature of the indoor space increases. Thus, it is possible
to conclude that by observing the temperature of the windows
and the walls over a span of few days, it is possible to obtain
the operational behaviour of the centralised HVAC system. It
is noted that unlike the heat map in Figure 6(a), which has a
constant value during the day, the heat map in Figure 6 shows a
slope changes during the day. This is mainly due to the changes
in outdoor temperature and solar radiation. This can be ob-
served from Figure 7, which depicts the heatmap for the rate
of change in temperature difference between the window and
wall, the outdoor temperature and solar radiation. On the days
with a significant increase in the outdoor temperature and solar
radiation, significant changes in the slope are observed for the
window-wall temperature slope during the day time. While for
the days without significant changes in temperature and radi-
ation (mainly cloudy and rainy days) the changes in the slope
during the day is not significant. Thus, from the heatmap of the
slope of the temperature difference between the wall and win-
dow it is possible to identify not just the operational pattern, but
also rainy and sunny days. In the subsequent section, the oper-
ational behaviour of window AC units is discussed in detail.

4.3.2. Window air-conditioning unit operation
Figure 8(a) and (b) shows the digital image of the location

of the window AC units (black box) and series of window AC
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(a) Dry-bulb indoor air temperature
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(b) Thermal image

Figure 6: Heat-map showing the (a) the slope of detrended indoor dry-bulb
air temperature for the weekdays, and (b) slope of the detrended temperature
difference between the window and wall obtained from the IR image.
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(a) Slope from thermal image
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Figure 7: Heat-maps showing (a) the slope of the detrended temperature differ-
ence between the window and wall obtained from the IR image for (b) outdoor
temperature and (c) solar radiation measured at the weather station located at
the observatory.
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units at the location respectively. Figure 8(c) shows the corre-
sponding IR image of the building. A bright spot is observed in
the IR image at the location of the window AC units (see black
box region in the image). The bright spot indicates that the AC
unit is in operation, while a non-bright region along the same
row indicates either the AC unit is not in operation or a pixel
without any AC unit at that location. To better understand the
variation in the temperature pattern during the AC unit opera-
tion, the temperature time series of the AC condenser unit pixel
from the IR image is extracted. Figure 9(a) shows the temper-
ature pattern of the pixel unit with an AC unit and a non-AC
unit along the same row highlighted using black box in 8(a).
It is observed that the temperature of the pixel corresponding
to the AC unit is relatively greater than the temperature of the
non-AC unit pixel. The bright spot in the IR image is a result
of the higher temperature of the condenser unit during its oper-
ation. Though this could be an indication of the AC operation,
however, during the day as the temperature of the surrounding
environment increases to as high as 40◦C, it can become diffi-
cult to identify its operation just by observing the differences
in the temperature. From the graph, it is also observed that, in
addition to the temperature of the condenser unit being higher
than the surrounding pixel, the temperature time series has a
wave-like pattern. This wave-like pattern is mainly a result of
the duty cycle of the AC condenser unit during its operation.

In addition to the temperature extracted from the IR images,
Figure 9(a) compares the indoor dry bulb temperature (of the
office space cooled by the same AC unit) with the AC con-
denser unit temperature extracted from thermal image. From
the graph, the time at which the AC unit is switched ‘off’ is
clearly identified as increase in the indoor dry bulb temperature.
A similar change or decrease in the indoor temperature is ob-
served when the AC unit is switched ‘on’ from the indoor tem-
perature profile. However, a similar change (sudden decrease
or increase) in the temperature profile of the condenser unit ex-
tracted from the IR image may or may not be clearly observed.
Figure 9(b) and (c) shows the heat map of the indoor tempera-
ture of the office space and the temperature of the pixel with the
AC unit extracted from the IR image respectively for a longer
duration of time. A fringe-like pattern is observed in both the
temperature heat maps, which is indicative of the AC unit oper-
ation. This shows that the operational pattern of AC units can
be detected by identifying the duty cycle from the temperature
time series.

A fast Fourier transform (FFT) is commonly used for identi-
fying the frequency content of the time series with a wave-like
pattern. Figure 10 shows the FFT of the moving averaged tem-
perature time series of the AC unit, the non AC unit pixel from
the IR image, and the indoor dry bulb temperature. It is ob-
served from the FFT spectrum of the temperature time series
of the pixel with and without AC unit, there exists a signifi-
cant difference in the FFT magnitude for the frequency in the
range of 0.0005 to 0.0011 (Hz). Also, comparing the FFT plots
for the indoor temperature and the temperature time series cor-
responding to AC unit pixel, it is observed that there exists a
dominant frequency in the same range, which is also the miss-
ing frequency in the case of the temperature of the pixel without

AC unit. This indicates that the duty cycle of the AC unit has a
frequency in the range of 0.0005 to 0.0011 Hz. Thus identify-
ing the time of occurrence of this frequency in the time series
can be indicative of the AC unit operation. However, the time
operation during the day cannot be obtained directly from the
FFT spectrum alone. A wavelet transform, on the other hand, is
a handy mathematical tool that allows the identification of the
time when a frequency occurs in a signal.

Figure 11(a) and (b) shows the wavelet transform spectrum
of the time series corresponding to pixel unit without AC unit
and with AC unit for the temperature signal shown in Figure
10(a). It is observed that between the time stamp of 600 min
to 1400 min the AC unit signal has a dominant frequency in
the range of 16 min and 32 min, which indicates the AC unit
is in operation. The frequencies other than the AC unit opera-
tion frequency could be due to the effect of external temperature
changes, solar radiation, and changes in environmental factors.
The AC condenser unit temperature signal is further cleaned to
remove the frequencies other than the operating AC unit fre-
quency, which can then be used to estimate the duration of AC
usage from the wavelet spectrum. Figure 11(c) and (d) shows
the wavelet transform spectrum of the indoor temperature and
the frequency cleaned AC unit temperature signal. It can be ob-
served that there exists a dominant operational frequency dur-
ing the same time duration in the wavelet spectrum of the in-
door temperature signal. Thus, the two spectrum can be used
for comparing the accuracy in the prediction of the duration of
operation of the AC unit.

Figure 12(a) and (b) shows the heatmaps of the duration of
the AC unit usage extracted from the wavelet transform spec-
trum of the indoor temperature sensor signal and AC unit tem-
perature from the thermal image respectively. The plots demon-
strate that from the wavelet spectrum of the temperature signal
of the condenser unit, it is possible to gain insights into the du-
ration of operation of the AC units. As mentioned previously,
the IR temperature is affected not just by the object under con-
sideration but as well as external temperature, solar radiation,
and emissivity of the objects. To study the effect of ambient
temperature and solar radiation variation during the day, accu-
racy is predicted with time and shown in Figure 12(c). It is
observed that prediction accuracy is high during the night and
early morning between 8 pm to 10 am and decreases during the
day. This is mainly due to the effect of very high solar radiation
and outdoor temperature. Based on the accuracy results, it is
recommended that for studies involving characterization of the
AC units, signal extracted during the night time should be used.

4.4. AC operational state detection and usage characterization
Based on the Wavelet analysis it is realised that for charac-

terization studies on AC unit it is best to consider the operation
of the unit in the nighttime. To demonstrate this, similar to the
residential buildings study in [25], the operational state (‘On’
or ‘Off’) of the AC units at night time is extracted from the in-
dividual temperature time series. A supervised method based
on univariate k-means clustering is applied. The univariate k-
Means algorithm partition the given one-dimensional data into
k clusters. In this study, k is set with two to select the optimal
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(a) Digital image of the building

(b) Digital image of the AC units

(c) IR image (bright spots indicate the AC units

Figure 8: (a) Digital image showing the location of the window AC unit in building 3, (b) Digital image showing the window AC unit ; and (c) Bright spots in the
IR image are the window AC units.
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(c) AC unit temperature - IR image

Figure 9: (a) Plot showing the time-series recorded for one day using thermal
image and indoor temperature sensor, Heatmaps showing the temperature mea-
sured over a duration of few days of the (b) indoor office space measured using
indoor temperature sensor and (c) pixel corresponding to AC condenser unit
from thermal image.

decision boundary between the ‘On’ or ‘Off’ states in the given
AC temperature time series data. As shown in Figure 9, some
AC units follow a cycling mode when they are in use whereas
other do not. Similar to the observations shown in [25], such
cycling behaviour is attributed to compressor-based AC units.

Figure 13 shows the distribution of AC usage by nine occu-
pants across the entire data collection period. We can observe
that AC3 is in the cycling state for 25% of night time. Whereas
AC4 is in the cycling state only for 0.5% of the night time. This
variation of AC usage per night could potentially indicate the
differences in AC types, usage, and/or set-temperature prefer-
ences of the occupants. Further analysis over longer duration
is required to identify specific AC type and the occupant’s be-
haviour.

4.5. Imaging for maximum information gain

One of the main advantages of using thermal imaging is that
it offers a non-contact method for scanning a large area in a
short period. However, there can be certain times of day dur-
ing which the infrared images that are captured may not yield
maximum information gain, which also depends on the type of
application for which the images are being used. One such in-
stance is during intense rainfall. During intense rainfall, the
infrared images are blurry and do not capture the surface tem-
perature of the buildings. Besides, intense rainfall, as shown
in Figure 7 the effect of solar radiation and outdoor tempera-
ture has a significant effect on the analysis for characterization
of AC usage patterns. The operation pattern from the window
AC units can be clearly and accurately detected when the ef-
fect of solar radiation is minimal especially between 8 pm and
10 am. This time interval will be suitable for applications in-
volving characterizing the AC system such as its efficiency or
detection of faults in its operation. Also, for the AC unit char-
acterization studies, the frequency of data collection should be
higher than the frequency of operation of the AC unit to accu-
rately capture the changes in the duty cycle and on/off states.

5. Conclusion

Unlike the previous studies on urban scale infrared thermog-
raphy such as the one by [42] showing the possibility for identi-
fication of heat sources in the urban settlement, or on estimation
of heat flux by [40] and [41], this work is a unique demonstra-
tion of extraction of the operational pattern of the HVAC sys-
tem in an educational building using the longitudinal thermal
images. To achieve this an IR observatory was installed on the
rooftop and operated for a few months.

The temperature data from the thermal camera was first veri-
fied against the temperature measured using the surface contact
sensors. It is observed that even though there exist differences
in the absolute values of the temperature, the de-trended tem-
perature pattern from the thermal images matches that of the
temperature recorded using contact sensors. It is important to
verify the accuracy in the similarity of the time series pattern
because the main focus here is to extract the operational pattern
of the HVAC system. However, for studies involving urban heat
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(a) No AC unit thermal WT (b) AC unit thermal WT

(c) Indoor dry bulb temperature WT
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Figure 11: Wavelet transform spectrum of (a)temperature signal of pixel without AC condenser unit, (b)temperature signal of pixel with AC condenser unit,
(c)dry-bulb indoor air temperature and (d)cleaned temperature signal of AC condenser
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Figure 12: Plot showing the duration of AC usage estimated from the wavelet
spectrum of (a) dry-bulb indoor air temperature sensor signal and (b) thermal
image respectively. The yellow regions represent the time when the AC was on
during the day. (c) Plot showing the accuracy in prediction of AC usage during
the day.

island ([47]) it would be required to re-calibrate the thermal
camera constants listed in Table 2 and the effect of boundary
conditions needs to be studied.

Subsequently, a complete pipeline for processing the thermal
images, followed by extraction and analysis of temperature time
series is demonstrated. In the work by [25], the operation of
single type of air-conditioning unit in residential buildings was
identified. While in this work, the educational building has two
different air conditioning systems. It is shown that based on the
type of HVAC system, the time series pattern analysis has to be
performed either in the time domain or frequency domain.

It is demonstrated that, by observing the changes in the sur-
face temperature profile for several days of the window and
wall, the operation pattern of the centralized HVAC system can
be deduced. The heatmaps shown in Figure 6 compare the time
series analysis of indoor dry bulb temperature against the tem-
perature of the window and wall from the thermal images. If
we observe the changes over a few days, a clear pattern corre-
sponding to switching ‘on’ and ‘off’ of the water-cooled HVAC
system can be identified.

For, the individual window AC units, a comparative analy-
sis is performed in the temporal and frequency domain and is
shown in Figure 9. The duty cycles of the condenser units iden-
tified using wavelet transform are indicative of the ‘on’ and ‘off’
state of the unit. The level of accuracy in the prediction of the
‘on’ and ‘off’ state is shown in Figure 12. The advantage of us-
ing wavelet transform is that it is possible to identify not just the
duration of operation but also the frequency of the duty cycle of
the condenser units. Studying the changes in the frequency of
the duty cycle has been shown to be useful for the evaluation
of the AC unit efficiency and also to detect faults ([51, 52]). In
addition to this, insights on usage patterns can be indicative of
human behavior as these units are operated by occupants them-
selves ([20–22]). To summarize, these are the main research
contributions:

• A longitudinal thermal imaging technique at urban scale is
demonstrated for studying the HVAC operational pattern
in an educational building.

• The operational pattern of a water-cooled HVAC system
can be detected by analysing the window and wall temper-
ature simultaneously over a duration of a few days.

• A wavelet transform of the thermal signature of the con-
denser unit of the air-cooled HVAC system is used for ex-
traction of its operational pattern.

Inference from the analysis of longitudinal thermal images
can serve as an alternative data-driven means to conduct energy
audits ([19]). One of the main advantages of this type of anal-
ysis compared to conventional energy audit is that it does not
require the deployment of a large array of temperature sensors
or energy meters ([23, 24]) in the building space. There are
possibilities to improve the accuracy in prediction of the oper-
ational pattern and user behaviour by considering the effect of
solar radiance and outdoor temperature and it is aimed to ad-
dress these in future work.
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Bautista, Data science for building energy management: A review, Re-
newable and Sustainable Energy Reviews 70 (2017) 598–609.

[9] K. Amasyali, N. M. El-Gohary, A review of data-driven building energy
consumption prediction studies, Renewable and Sustainable Energy Re-
views 81 (2018) 1192–1205.

[10] ASHRAE 211-2018, Standard for Commercial Building Energy Au-
dits, Standard, American Society of Heating, Refrigerating and Air-
Conditioning Engineers, Atlanta, GA, 2018.

[11] ASHRAE, Guideline 14, measurement of energy and demand savings,
American Society of Heating, Ventilating, and Air Conditioning Engi-
neers, Atlanta, Georgia (2014).

[12] EVO, International performance measurement and verification protocol:
Statistics and uncertainty for ipmvp, Efficiency Valuation Organization
(2014).

[13] A. Chong, Y. Gu, H. Jia, Calibrating building energy simulation models:

A review of the basics to guide future work, Energy and Buildings 253
(2021) 111533.

[14] J. Y. Park, E. Wilson, A. Parker, Z. Nagy, The good, the bad, and the
ugly: Data-driven load profile discord identification in a large building
portfolio, Energy and Buildings 215 (2020) 109892.

[15] J. Zhu, Y. Shen, Z. Song, D. Zhou, Z. Zhang, A. Kusiak, Data-driven
building load profiling and energy management, Sustainable Cities and
Society 49 (2019) 101587.

[16] Y. Himeur, K. Ghanem, A. Alsalemi, F. Bensaali, A. Amira, Artificial
intelligence based anomaly detection of energy consumption in build-
ings: A review, current trends and new perspectives, Applied Energy
287 (2021) 116601.

[17] N. Qi, L. Cheng, H. Xu, K. Wu, X. Li, Y. Wang, R. Liu, Smart meter data-
driven evaluation of operational demand response potential of residential
air conditioning loads, Applied Energy 279 (2020) 115708.

[18] M. Bourdeau, X. qiang Zhai, E. Nefzaoui, X. Guo, P. Chatellier, Modeling
and forecasting building energy consumption: A review of data-driven
techniques, Sustainable Cities and Society 48 (2019) 101533.

[19] IEA, Cooling, Technical Report, 2021.
[20] R. Yasue, H. Habara, A. Nakamichi, Y. Shimoda, Modeling the occupant

behavior relating to window and air conditioner operation based on survey
results, in: Proceedings of the 13th Conference of International Building
Performance Simulation Association, Cambery, France, 2013.

[21] D. Xia, S. Lou, Y. Huang, Y. Zhao, D. H. Li, X. Zhou, A study on occu-
pant behaviour related to air-conditioning usage in residential buildings,
Energy and Buildings 203 (2019) 109446.

[22] N. Aqilah, S. A. Zaki, A. Hagishima, H. B. Rijal, F. Yakub, Anal-
ysis on electricity use and indoor thermal environment for typical air-
conditioning residential buildings in malaysia, Urban Climate 37 (2021)
100830.

[23] X. Zhou, S. Tian, J. An, J. Yang, Y. Zhou, D. Yan, J. Wu, X. Shi, X. Jin,
Comparison of different machine learning algorithms for predicting air-
conditioning operating behavior in open-plan offices, Energy and Build-
ings 251 (2021) 111347.

[24] G. Y. Yun, H. J. Kong, J. T. Kim, A field survey of occupancy and air-
conditioner use patterns in open plan offices, Indoor and Built environ-
ment 20 (2011) 137–147.

[25] P. Arjunan, G. Dobler, K. Lee, C. Miller, F. Biljecki, K. Poolla, Opera-
tional characteristics of residential air conditioners with temporally gran-
ular remote thermographic imaging, in: Proceedings of the 8th ACM In-
ternational Conference on Systems for Energy-Efficient Buildings, Cities,
and Transportation, 2021, pp. 184–187.

[26] X. Meng, Y. Gao, C. Hou, F. Yuan, Questionnaire survey on the sum-

16



mer air-conditioning use behaviour of occupants in residences and office
buildings of china, Indoor and Built Environment 28 (2019) 711–724.
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